1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fomenos
3 years ago
6

If you lie on the ground at night with no cover, you get cold rather quickly. Much of this is due to energy loss by radiation. A

t night in a dry climate, the temperature of the sky can drop to −40∘C. If you are lying on the ground with thin clothing that provides little insulation, the surface temperature of your skin and clothes will be about 30∘C. Estimate the net rate at which you body loses energy by radiation to the night sky under these conditions. Hint: What area should we use?
Physics
1 answer:
marin [14]3 years ago
7 0

Answer:

301.48 J/s

Explanation:

We are given;

Temperature of the sky dropping to −40∘C: T_o = -40°C = -40 + 273 = 233 K

Temperature of your skin and clothes: T = 30°C = 30 + 273 = 303 K

Body surface area of human body is around 2 m². But here only half of the body is facing the sky, Thus Area is: A = 2/2 = 1 m²

To solve this, we will use the equation for thermal heat transfer known as the Stefan bolt Mann equation.

ΔQ/Δt = εσA(T⁴ - (T_o)⁴)

Where;

ΔQ/Δt is the rate at which you body loses energy by radiation

ε is the emissivity of the human body with a value of 0.97

σ is Stefan boltzmann constant with a value of 5.67 X 10^(-8) W/m².K⁴

Thus;

ΔQ/Δt = 0.97 × 5.67 X 10^(-8) × 1(303⁴ - 233⁴)

ΔQ/Δt = 301.48 J/s

You might be interested in
M84, M87, and NGC 4258 all have accretion disks around their central black holes for which the rotational velocities have been m
givi [52]

Answer:

<u>For M84:</u>

M = 590.7 * 10³⁶ kg

<u>For M87:</u>

M = 2307.46 * 10³⁶ kg

Explanation:

1 parsec, pc  = 3.08 * 10¹⁶ m

The equation of the orbit speed can be used to calculate the doppler velocity:

v = \sqrt{\frac{GM}{r} }

making m the subject of the formula in the equation above to calculate the mass of the black hole:

M = \frac{v^{2} r}{G}.............(1)

<u>For M84:</u>

r = 8 pc = 8 * 3.08 * 10¹⁶

r = 24.64 * 10¹⁶ m

v = 400 km/s = 4 * 10⁵ m/s

G = 6.674 * 10⁻¹¹ m³/kgs²

Substituting these values into equation (1)

M = \frac{( 4*10^{5}) ^{2} *24.64* 10^{16} }{6.674 * 10^{-11} }

M = 590.7 * 10³⁶ kg

<u>For M87:</u>

r = 20 pc = 20 * 3.08 * 10¹⁶

r = 61.6* 10¹⁶ m

v = 500 km/s = 5 * 10⁵ m/s

G = 6.674 * 10⁻¹¹ m³/kgs²

Substituting these values into equation (1)

M = \frac{( 5*10^{5}) ^{2} *61.6* 10^{16} }{6.674 * 10^{-11} }

M = 2307.46 * 10³⁶ kg

The mass of the black hole in the galaxies is measured using the doppler shift.

The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.

3 0
3 years ago
What two characteristics are used to classify air masses
IgorLugansk [536]

Answer: Temperature and humidity are the two characteristics used to classify air masses.

Explanation:

7 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
Average velocity is different than average speed because calculating average velocity involves ?
Studentka2010 [4]
Direction!

Velocity is a vector quantity and speed is a scalar quantity. Vector quantities includes both magnitude and direction, while scalar quantities only have magnitude. :)
5 0
3 years ago
Read 2 more answers
What equals the number of protons in an atom
Reptile [31]

<span>Each atom contains an equal number of protons and electrons; these particles will be equal in value to an element's atomic number</span>

6 0
3 years ago
Read 2 more answers
Other questions:
  • How is power defined
    5·2 answers
  • If the total charge on a rod of length 0.4 m is 2.6 nc, what is the magnitude of the electric field at a location 3 cm from the
    5·1 answer
  • What is the total number of neutrons in an atom of an element that has a mass number of 19 and an atomic number of 9?
    11·1 answer
  • When a force is applied to an object for an amount of time, it is known as __________.
    6·2 answers
  • What did Galileo discover when he dropped two cannon balls of different weights from the Leaning Tower of Pisa?
    15·2 answers
  • A fission reaction possible is that certain atoms are
    15·1 answer
  • A car skids to a stop. What happens to its kinetic energy?
    9·1 answer
  • A boy falls and hits his head with an impulse of 20N-s. On cement, the boy would hit for
    8·1 answer
  • A 1400.0 kg car crests a 3200.0 m pass in the mountains and briefly comes to rest. The car descends 1000 m before climbing and c
    9·1 answer
  • By which factor is the sound intensity decreased at 3 meters?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!