Contact metamorphism<span> is a type of </span>metamorphism<span> where rock minerals and texture are changed, mainly by heat, due to </span>contact<span> with magma. </span>Regional metamorphism<span> is a type of </span>metamorphism<span> where rock minerals and texture are changed by heat and pressure over a wide area or region.</span>
Potential energy can be calculated using the following rule:
potential energy = mgh where:
m is the mass = 85 kg
g is the acceleration due to gravity = 9.8 m/sec^2
h is the height = 4 km = 4000 meters
Substitute in the above equation to get the potential energy as follows:
Potential energy = 85*9.8*4000 = 3332000 joules
Answer:
Explanation:
<u>Elastic Potential Energy
</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.
Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.
Solving for Δx:
Substituting:
Calculating:
Answer:
i) 0.9504
ii) 0.0452
Explanation:
Given data: reliability of hydraulic brakes= 0.96
reliability of mechanical brakes = 0.99
So the probability of stopping the truck = 0.96×0.99= 0.9504
At low speed
case: A works and B does not
= 0.96×(1-0.99) = 0.0096
case2 : B works and A does not
= 0.99×(1-0.96) = 0.0396
Therefore, probality of stopping = 0.0096+0.0396 = 0.0492
Answer:
M' = μ₀n₁n₂πr₂²
Explanation:
Since r₂ < r₁ the mutual inductance M = N₂Ф₂₁/i₁ where N₂ = number of turns of solenoid 2 = n₂l where n₂ = number of turns per unit length of solenoid 2 and l = length of solenoid, Ф₂₁ = flux in solenoid 2 due to magnetic field in solenoid 1 = B₁A₂ where B₁ = magnetic field due to solenoid 1 = μ₀n₁i₁ where μ₀ = permeability of free space, n₁ = number of turns per unit length of solenoid 1 and i₁ = current in solenoid 1. A₂ = area of solenoid 2 = πr₂² where r₂ = radius of solenoid 2.
So, M = N₂Ф₂₁/i₁
substituting the values of the variables into the equation, we have
M = N₂Ф₂₁/i₁
M = N₂B₁A₂/i₁
M = n₂lμ₀n₁i₁πr₂²/i₁
M = lμ₀n₁n₂πr₂²
So, the mutual inductance per unit length is M' = M/l = μ₀n₁n₂πr₂²
M' = μ₀n₁n₂πr₂²