Answer:
volumetric flow rate = 
Velocity in pipe section 1 = 
velocity in pipe section 2 = 12.79 m/s
Explanation:
We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.
The density of water is = 997 kg/m³
density = mass/ volume
since we are given the mass, therefore, the volume will be mass/density
25/997 = 
volumetric flow rate = 
Average velocity calculations:
<em>Pipe section A:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

<em>Pipe section B:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

Answer:
Ceramic coating offers good protection to the car's surface. The nano-coating can protect the car from most scratches, dirt and chemical contaminants. Ceramic coating also doesn't have any side-effects to the original paint. Ceramic coating also lasts longer than regular paint.
<h2>
<em><u>Hope the helps.. </u></em></h2>
Answer:
474.59 mg/L
Explanation:
Given that
BOD = 30 mg/L
Original BOD = 30 mg/L × dilution factor
Original BOD = 30 mg/L × 10 = 300 mg/L

here
is the ultimate BOD ; BOD is the biochemical oxygen demand ; t = 0.20 /day

Answer:
1) 
2) 
Explanation:
For isothermal process n =1

![V_o = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.03

b) for adiabatic process
n =1.4
volume of hydraulic accumulator is given as
![V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}](https://tex.z-dn.net/?f=V_o%20%3D%5Cfrac%7B%5CDelta%20V%7D%7B%5B%5Cfrac%7Bp_o%7D%7Bp_1%7D%5D%5E%7B1%2Fn%7D%20-%5B%5Cfrac%7Bp_o%7D%7Bp_2%7D%5D%5E%7B1%2Fn%7D%7D)
![V_o = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1.4%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1.4%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.15

Answer:
a) the temperature to which the pin must be cooled for assembly is 
b) the radial pressure at room temperature after assembly is 
c) the safety factor in the resulting assembly = 6.4
Explanation:
Coefficient of thermal expansion 
Yield strength
= 400 MPa
Modulus of elasticity (E) = 209 GPa
Room Temperature
= 20°C
outer diameter of the collar 
inner diameter of the collar
pin diameter
= 
Clearance c = 0.06 mm
a)
The temperature to which the pin must be cooled for assembly can be calculated by using the formula:


-0.09 = 

-0.09 =

=
−0.07523262 =


b)
To determine the radial pressure at room temperature after assembly ;we have:

c) the safety factor of the resulting assembly is calculated as:
safety factor = 
safety factor = 
safety factor = 6.4
Thus, the safety factor in the resulting assembly = 6.4