<h2>Answer : Option A) true</h2><h3>Explanation : </h3>
CO which is carbon monoxide is a primary pollutant for air pollution. As it contributes to the major proportion in the air pollutants amongst others. It has 48% percent of pollutants in comparison to other pollutants of air. The source of carbon monoxide is mainly from incomplete combustion of fuel mostly from the older cars.
The rise in atmospheric CO results in fatigue, drowsiness and my also sometimes lead to death of the person exposed to it.
The four states of matter are solid, liquid, gas, and plasma.
Solid: a solid object has a definite volume and shape i.e. A box
Liquid: liquid has a definite volume but no definite shape i.e. Water
Plasma: plasma has some of the properties of gas but it's a good trainer of electricity and is a affected in a magnetic field i.e. A star
Gas: gas does not have a definite shape or volume so it takes the shoe of its container i.e. Balloon
Answer: Mg is the excess reactant for the forward reaction.
Explanation: It is a stoichiometry problem and solved with the help of given grams and using balanced equation. Grams of both the reactants are converted to moles and divided by their coefficients. The excess reactant is the one for which we get the highest number on doing above steps.
The balanced equation is:

Molar mass of silicon tetra chloride is 169.9 gram per mol and the molar mass of Mg is 24.3 gram per mol.

= 

= 2.67 mol Mg
From balanced equation, the coefficient of silicon tetra chloride is 1 and that of Mg is 2. So, we will divide the moles of silicon tetra chloride by 1 and that of Mg by 2 and see which one gives highest number.
For silicon tetra chloride,
= 0.317
and for Mg,
= 1.34
The highest number is for Mg and so the excess reactant for the forward reaction is Mg.
24 gFeF3 x (1 mol FeF3/grams FeF3)
x (6.02x10^23 molecules FeF3/ 1 mol FeF3)
Just Calculate Molar Mass of FeF3 and plug into equation
Answer:
<em>D. One negative charge</em>
Explanation:
During the formation of a bond, if an atom gains an electron, after that it will be left with a negative charge compared to the atom before the bond is formed. This is because in these types of bonds, which are <em>ionic bonds</em>, there is a <em>transfer of electrons between atoms</em>, there will be one or more atoms that yield electrons that will be captured by another and other atoms that gain them, and the difference of charges produced by this transfer of electrons, will cause the union to occur due to the attraction between electrostatic forces.
If you have a neutral atom before joining, and it gains an electron to form a bond,<em> it will have one electron more than its initial state</em> (in the initial state, the number of protons and electrons is the same, because the atoms they are electrically neutral), so having an extra electron will make it have a negative charge, since there will be a difference between the number of protons and electrons that the atom possesses. <em>This is why the correct answer is D.
</em>
In the case of <em>response A and B</em>, <em>the atom could only remain positively charged if it loses electrons</em>, but as in this case it wins, <em>they are not correct</em>.
<em>The answer C is also not correct</em> because only one electron wins, so that it is left with two negative charges, <em>it should gain two electrons during the bond formation.</em>