Answer:
1083.3kg/m
³
Explanation:
Given parameters:
Mass of aluminium ball = 3.4kg
Apparent mass of ball = 2.1kg
Unknown:
Density of the liquid = ?
Solution:
Density is is the mass per unit volume of any give substance;
Density = 
Now, we must understand that the apparent weight of the aluminium is the part of its weight supported by the fluid;
Pl = 
Pl = density of liquid
Ml = mass of liquid
Vl = volume of liquid
Mass of liquid = Mal - Mapparent
Mal = mass of aluminium
The volume of liquid displaced is the same as the volume of the aluminium according to Archimedes's principle;
Ml = Pl x Vl
Val = Vl
Val volume of aluminium
Vl = volume of liquid
****
Pal = 
Val = 
Val = volume of aluminium
Mal = mass of aluminium
Pal = density of aluminium
*****
Since the Val = Vl
Ml = Pl x 
Since
Ml = Mal - Mapparent
Mal - Mapparent = Pl x 
Pal = density of aluminium = 2712 kg/m
³
3.4 - 2.1 = Pl x 
1.3 = Pl x 0.00123
Pl = 1083.3kg/m
³
Answer:
Calculate 'R' of convex mirror and height of the real image
the radius of the convex mirror is 48cm
Explanation:
Distance between convex and concave mirror is =60cm
Radius of the concave mirror (R) = 200cm
For the concave mirror, u = ∞
V = {R}/{2}=100cm
The object for the convex mirror and the final image is on the pole of the concave mirror, and distance between convex and concave mirror is 60cm
u_1=60-100 =-40cm
Object will be behind the convex mirror
1/f=1/40+1/60
f=24cms
the radius of the convex mirror is 48cm
<span>The choices can be found elsewhere and as follows:
</span><span>a. they are so small that they stay close to the ground due to the attractive properties of charged soil particles.
b. they are easily carried by the wind.
c. they easily dissolve in liquid droplets.
d. it is easier for then to roll along the small crevices in the ground.</span><span>
</span>I think the correct answer from the choices listed above is option B. Only the smallest particles of soil can be displaced by suspension because they are so small that they are easily carried by the wind. Hope this answers the question. Have a nice day. Feel free to ask more questions.
E1 reaction works in the mechanism that the removal of an HX substituent results in the formation of a double bond. The E1 reaction for 2-methylbutan-2-ol is shown in the figure. This reaction is called acid-catalyzed dehydration of a tertiary alcohol.
The mechanism works in three major steps:
1. The OH group of the main reactant is hydrated by H2SO4 so it becomes H2O.
2. The H2O leaves taking electrons with it. This results to a carbocation intermediate on the carbon atom where it was attached.
3. Another H2O protonates the beta carbon. This is the carbon atom next to the carbocation. It will donate its electrons to the neighboring C-C bond, as indicated by the arrow. The carbons are rehybridized from sp3 to sp2, which is a pi bond. As a result, a double bond forms.
The product is 2-methyl-2-butene.
A concave lens can only form a virtual image. The correct option among all the options that are given in the question is the third option or option "C". Concave lenses are mostly thinner in the middle compared to its edges. I hope that this answer has come to your help.