Answer: Concentration of N₂ is 4.8.
M.
Explanation:
is a constant of equilibrium and it is dependent of the concentrations of the reactants and the products of a balanced reaction. For
N2(g) + 2 O2(g) ⇄ 2 NO2(g)
= ![\frac{[NO2]^{2} }{[N2][O2]^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO2%5D%5E%7B2%7D%20%7D%7B%5BN2%5D%5BO2%5D%5E%7B2%7D%20%7D)
From the question concentration of NO2 is twice of O2:
[NO2] = 2[O2]
Substituting this into
:
= ![\frac{[2O2]^{2} }{[N2][O2]^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2O2%5D%5E%7B2%7D%20%7D%7B%5BN2%5D%5BO2%5D%5E%7B2%7D%20%7D)
8.3.
= ![\frac{4O2^{2} }{[N2].O2^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B4O2%5E%7B2%7D%20%7D%7B%5BN2%5D.O2%5E%7B2%7D%20%7D)
[N2] = 
[N2] = 
[N2] = 4.8.
The concentration of N2 in the equilibrium is [N2] = 4.8.
M.
It should be noted that when a reaction is occurring in a test tube, heat transmitted to the surroundings when Molecules collide with the glass, and the glass molecules then transmit that energy to the outside.
<h3>What is heat?</h3>
Heat can be regarded as a form of energy which is energy that is been transferred as a result of difference in temperature.
In the case above, Molecules collide with the glass, and the glass molecules then transmit that energy to the outside which is an exothermic reaction.
Therefore, option B is correct.
Learn more about heat at:
brainly.com/question/12072129
Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.
Answer:
the radius is half the diameter