Answer:
How the relative density of a substance is related to the density calculate the density of iron if its relative density is 2 and a density of water is 2gcm -3
R.d= relative density of substance/ relative density of water
R.d= 2/2
R.d= 1gcm-3
Explanation:
Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = 
.
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, +
and 1, 0, 0, -
.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
Answer: Option (C) is the correct answer.
Explanation:
An ion is defined as a specie which is formed when a neutral atoms tends to gain or lose an electron.
When a neutral atom gain an electron then it forms a negative ion whereas when a neutral atom tends to lose an electron then it forms a positive ion.
For example, a neutral fluorine atom on gaining an electron will form
ion. And, a sodium atom on losing an electron forms
ion.
When a group of atoms form ions then it tends to form polyatomic ions.
Thus, we can conclude that group of atoms that gains or loses electrons is called a polyatomic ion.
Answer:
the answer is B.
No, as ionic compounds are only conductive in an aqueous (water) solution
Explanation: i just know
Answer:
The nucleus represents a major evolutionary transition. As a consequence of separating translation from transcription many new functions arose, which likely contributed to the remarkable success of eukaryotic cells. Here we will consider what has recently emerged on the evolutionary histories of several key aspects of nuclear biology; the nuclear pore complex, the lamina, centrosomes and evidence for prokaryotic origins of relevant players.