Answer:
These are the elements or compounds that enter into a chemical reaction: Reactants
These are the substance(s) formed in a chemical reaction: Products
These are the reactants in the chemical equation C6H1206 +602 --> 6CO2 + 6H20: C6H1206 and 602
These are the reactants in the chemical equation 6 CO2 + 6H2O --> C6H1206 + 6 02: 6 CO2 + 6H2O
These are the reactants in the chemical equation 2 H2 + 02 --> 2 H2O: 2H2 and O2
These are the reactants in the chemical equation 2 H2O --> 2 H2 + O2: 2H2O
Answer:
Moles of silver iodide produced = 1.4 mol
Explanation:
Given data:
Mass of calcium iodide = 205 g
Moles of silver iodide produced = ?
Solution:
Chemical equation:
CaI₂ + 2AgNO₃ → 2AgI + Ca(NO₃)₂
Number of moles calcium iodide:
Number of moles = mass/ molar mass
Number of moles = 205 g/ 293.887 g/mol
Number of moles = 0.7 mol
Now we will compare the moles of calcium iodide with silver iodide.
CaI₂ : AgI
1 : 2
0.7 : 2×0.7 = 1.4
Thus 1.4 moles of silver iodide will be formed from 205 g of calcium iodide.
<h3>
Answer:</h3>
28 mol CaF
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.7 × 10²⁵ molecules CaF
[Solve] moles CaF
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
28.2298 mol CaF ≈ 28 mol CaF
Answer:
Explanation:
<em>0.5 i go to k12 i jus took the test</em>
For example, copper is used for electrical<span> wiring because it is a </span>good conductor of electricity<span>. </span>Metal<span> particles are held together by strong metallic bonds, which is why they have high melting and boiling points. The free electrons in </span>metals<span> can move through the </span>metal<span>, allowing </span>metals<span> to conduct </span>electricity<span>.</span>