Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Actually, that does not happen until the protostar becomes a star when nuclear ignition starts and is maintained. It takes awhile for new star to go through its T-Tauri stage and settle down on the main sequence.
<span>A STAR does not reach hydrostatic equilibrium until it on the main sequence. Otherwise, it would remain a brown dwarf with not enough mass to to maintain nuclear fusion for more than 3,000 to 10,00 years. </span>
Scientific laws and theories have different jobs to do. A scientific law predicts the results of certain initial conditions. ... In contrast, a theory tries to provide the most logical explanation about why things happen as they do.
moles NaOH = c · V = 0.2432 mmol/mL · 24.75 mL = 6.0192 mmol
moles H2SO4 = 6.0192 mmol NaOH · 1 mmol H2SO4 / 2 mmol NaOH = 3.0096 mmol
Hence
[H2SO4]= n/V = 3.0096 mmol / 38.94 mL = 0.07729 M
The answer to this question is [H2SO4] = 0.07729 M
Electrons - they are the particles that determine the chemical properties of an element