Force (f) = ?
Acceleration (a) = 196 m/s^2
Mass (m) = 0.25 kg
F = (m) • (a)
F = (0.25) • (196)
F = 49 N
Answer : 49 N
I hope that helps you!! Any more questions??
Answer:
serie Ceq=0.678 10⁻⁶ F and the charge Q = 9.49 10⁻⁶ C
Explanation:
Let's calculate all capacity values
a) The equivalent capacitance of series capacitors
1 / Ceq = 1 / C1 + 1 / C2 + 1 / C3 + 1 / C4 + 1 / C5
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 1 / 6.2 + 1 / 6.2
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 2 / 6.2
1 / Ceq = 0.666 + 0.3030 +0.1818 +0.3225
1 / Ceq = 1,147
Ceq = 0.678 10⁻⁶ F
b) Let's calculate the total system load
Dv = Q / Ceq
Q = DV Ceq
Q = 14 0.678 10⁻⁶
Q = 9.49 10⁻⁶ C
In a series system the load is constant in all capacitors, therefore, the load in capacitor 5.5 is Q = 9.49 10⁻⁶ C
c) The potential difference
ΔV = Q / C5
ΔV = 9.49 10⁻⁶ / 5.5 10⁻⁶
ΔV = 1,725 V
d) The energy stores is
U = ½ C V²
U = ½ 0.678 10-6 14²
U = 66.4 10⁻⁶ J
e) Parallel system
Ceq = C1 + C2 + C3 + C4 + C5
Ceq = (1.5 +3.3 +5.5 +6.2 +6.2) 10⁻⁶
Ceq = 22.7 10⁻⁶ F
f) In the parallel system the voltage is maintained
Q5 = C5 V
Q5 = 5.5 10⁻⁶ 14
Q5 = 77 10⁻⁶ C
g) The voltage is constant V5 = 14 V
h) Energy stores
U = ½ C V²
U = ½ 22.7 10-6 14²
U = 2.2 10⁻³ J
Answer:



Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:

By knowing this, we can estimate the total current through the circuit,:

So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:

So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:

Answer: nuclear fusion
Explanation: give me a brainliest
Hope this helps!!!!!!!!!!!!!