The number of moles of NH3 that could be made would be 0.5 moles
<h3>Stoichiometric reactions</h3>
From the balanced equation of the reaction:
N2 (g) + 3 H2(g) ----> 2NH3 (g)
The mole ratio of N2 to H2 is 1:3
Thus, for 0.50 moles of N2, 1.5 moles of H2 should be present. But 0.75 moles of H2 was allowed to react. Meaning that H2 is limiting in this case.
Mole ratio of H2 and NH3 = 3:2
Thus for 0.75 moles H2, the mole of NH3 that would be produced will be:
2 x 0.75/3 = 0.5 moles
More on stoichiometric calculations can be found here: brainly.com/question/8062886
The change is that the water will freeze to 0 or minus I don’t know as I’m not to sure
Answer:
A. The increase in the mass of the magnesium oxide was due to oxygen atoms in the air.
Explanation:
Burning occurs in the presence of oxygen. A chemical combination occurs between Mg and O in that the atom of magnesium attracts one another.
Mg + O₂ → MgO
Starting with the magnesium, on reacting with oxygen a new compound forms. This is why there is mass increase in the MgO compared to the starting material.
None of these; the most electronegative element is fluorine because an atom of fluorine needs an additional electron to join it's outer membrane, so the atom can achieve stability.
a flourine atom on its own is always a negative ion.
Answer: B.
Explanation:
Trust me already took the quiz on it its B.