Answer:
Equilibrium is when the rate of the forward reaction equals the rate of the reverse reaction. All reactant and product concentrations are constant at equilibrium.
Explanation:
The two ladybugs have same rotational (angular) speed
Explanation:
The rotational (angular) speed of an object in circular motion is defined as:

where
is the angular displacement
t is the time interval considered
Here we have two ladybugs, which are located at two different distances from the axis. In particular, ladybug 1 is halfway between ladybug 2 and the axis of rotation. However, since they rotate together with the disk, and the disk is a rigid body, every point of the disk cover the same angle
in the same time
: this means that every point along the disk has the same angular speed, and therefore the two ladybugs also have the same angular speed.
On the other hand, the linear speed of the two ladybugs is different, because it follows the equation:

where r is the distance from the axis: and since the two ladybugs are located at different
, they have different linear speed.
Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
the answer is (a) molecules
Answer:
b) total energy input equals total energy output
Explanation:
The first law of thermodynamics is a generalization of the conservation of energy in thermal processes. It is based on Joule's conclusion that heat and energy are equivalent. But to get there you have to get around some traps along the way.
From Joule's conclusion we might be tempted to call heat "internal" energy associated with temperature. We could then add heat to the potential and kinetic energies of a system, and call this sum the total energy, which is what it would conserve. In fact, this solution works well for a wide variety of phenomena, including Joule's experiments. Problems arise with the idea of heat "content" of a system. For example, when a solid is heated to its melting point, an additional "heat input" causes the melting but without increasing the temperature. With this simple experiment we see that simply considering the thermal energy measured only by a temperature increase as part of the total energy of a system will not give a complete general law.
Instead of "heat," we can use the concept of internal energy, that is, an energy in the system that can take forms not directly related to temperature. We can then use the word "heat" to refer only to a transfer of energy between a system and its environment. Similarly, the term work will not be used to describe something contained in the system, but describes a transfer of energy from one system to another. Heat and work are, therefore, two ways in which energy is transferred, not energies.
In an isolated system, that is, a system that does not exchange matter or energy with its surroundings, the total energy must remain constant. If the system exchanges energy with its environment but not matter (what is called a closed system), it can do so only in two ways: a transfer of energy either in the form of work done on or by the system, either in the form of heat to or from the system. In the event that there is energy transfer, the change in the energy of the system must be equal to the net energy gained or lost by the environment.