Answer:
e) None of these is true
Explanation:
Given that
Temperature = 0 K
We know that relationship between kelvin and Farenheit scale

Now by putting the values


So F= - 459.67°F
So we can say that 0 K is equal to - 459.67°F.
So the our option e is correct.
Given that,
Atmospheric Pressure = 14.7 psi
Cooking Pressure = 14.7 +11.1 = 25.8 psi
Take, Atmospheric Temperature = 25 °C
Cooking Temperature = ??
Since, we know that Gas equation is given by:
PV = nRT
or
P ∝ T
P1 / T1 = P2 / T2
14.7/ 25 = 25.8/ T2
T2 = 25*25.8/14.7
T2 = 43.87 °C
The cooking pressure will be 43.87 °C.
Answer:
yes, if water was stronger then the rocks would not sink.
Explanation:
Answer: Option (B) is the correct answer.
Explanation:
As we know that the temperature when the vapor pressure of liquid becomes equal to the atmospheric pressure surrounding the liquid. And, during this temperature liquid state of substance changes into vapor state.
But during this process of change in state of substance the temperature will cease to change for some time because unless and until all the liquid molecules do not convert into vapor state the temperature will not rise or change.
As the boiling point of water is
so the temperature ceases to change from
to
.
Therefore, we can conclude that when heating water, during
to
temperature range the temperature will cease to change for some time.
Answer:
3.12 x 10^-5 m
Explanation:
Length of steel column, L = 4 m
diameter, d = 0.2 m
radius = half of diameter = 0.1 m
Young's modulus, Y = 2 x 10^11 N/m^2
Mass of truck, m = 5000 kg
Force, F = mass of truck x acceleration due to gravity
F = 5000 x 9.8 = 49000 N
Area of crossection of cable,
A = 
Let ΔL be the shrink in length of cable, then by the formula of Young's modulus



ΔL = 3.12 x 10^-5 m
Thus, the shrink in the length of cable is 3.12 x 10^-5 m.