The arrangement of molecules within the 3 phases of matter are shown in the picture.
For the solid, the molecules are packed closely together. They don't have much space to move, so they just practically vibrate. For the liquid, the molecules are relatively farther from each other. The liquid molecules can flow freely but not as much as the gases. In the gases, the molecules are very far from each other. They are very sensitive to slight changes of pressure, volume and temperature.
Answer:
Sulfur
Explanation:
You find the identity by looking at the number of protons. The number of protons never change for an element.
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>
Sulfur reacts with oxygen to produce sulfur dioxide. That is for every mole of sulfur reacted, one mole of sulfur dioxide also is produced. With the given mole of sulfur dioxide, the amount of sulfur in mass is determined by multiplying the number of moles to the molar mass of sulfur (32 g/mol).