Answer:
hope this helps you're welcome
To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find

The correct answer (sample response) is:
The image seems to be behind the mirror, but nothing is really there.
Include the following in your response:
The image appears to be behind the mirror.
If someone looks behind the mirror, there is no image there.

Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.