1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
10

Why is it possible for a gas to take the shape of its container?

Physics
2 answers:
Sedaia [141]3 years ago
8 0
I believe the answer is A

Gelneren [198K]3 years ago
8 0
The answer is a , hope that helped
You might be interested in
A long uniformly charged thread (linear charge density λ= 2.5 C/m) lies along the x axis in the figure.(Figure 1) A small charge
Kamila [148]

Answer 1) The electric field at distance r from the thread is radial and has magnitude  

E = λ / (2 π ε° r)  

The electric field from the point charge usually is observed to follow coulomb's law:  

E = Q / (4  π ε° r^{2})  

Now, adding the two field vectors:  

E_{thread}  =  {2.5 / (22 π ε° X 0.07 ) ; 0}  

Answer 2) E_{q}  = {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))

Adding these two vectors will give the length which is magnitude of the combined field.  

The y-component / x-component gives the tangent of the angle with the positive x-axes.

Please refer the graph and the attachment for better understanding.

5 0
3 years ago
_____ are placed on dangerous machinery to detect motion, light, heat, pressure, or another stimulus. Their presence helps prote
goblinko [34]

Answer;

-Sensors

-Sensors are placed on dangerous machinery to detect motion, light, heat, pressure, or another stimulus. Their presence helps protect operators from injury while working on machines.

Explanation;

-Machinery, safety and factory floor sensors and switches help workers become more productive, efficient, and safe.

-Hazardous machines and systems are frequently equipped with safety elements (safety doors) with a locking mechanism to protect the operator. Their function is to prevent hazardous machine functions if the safety door is not closed and locked and to keep the safety door closed and locked until the risk of injury has passed.

4 0
3 years ago
Read 2 more answers
The Nucleus of the Atom is in the center of the Atom, not in the outer rings & orbitals.
chubhunter [2.5K]

Answer:

true

Explanation:

this the nucleus is located at the centre and contains protons and neutrons

3 0
3 years ago
Why is pseudoscience bad?
USPshnik [31]

Answer:

It is quite difficult to picture a pseudoscientist—really picture him or her over the course of a day, a year, or a whole career. What kind or research does he or she actually do, what differentiates him or her from a carpenter, or a historian, or a working scientist? In short, what do such people think they are up to?

… it is a significant point for reflection that all individuals who have been called “pseudoscientists” have considered themselves to be “scientists”, with no prefix.

The answer might surprise you. When they find time after the obligation of supporting themselves, they read papers in specific areas, propose theories, gather data, write articles, and, maybe, publish them. What they imagine they are doing is, in a word, “science”. They might be wrong about that—many of us hold incorrect judgments about the true nature of our activities—but surely it is a significant point for reflection that all individuals who have been called “pseudoscientists” have considered themselves to be “scientists”, with no prefix.

What is pseudoscience?

“Pseudoscience” is a bad category for analysis. It exists entirely as a negative attribution that scientists and non‐scientists hurl at others but never apply to themselves. Not only do they apply the term exclusively as a discrediting slur, they do so inconsistently. Over the past two‐and‐a‐quarter centuries since the term popped into the Western European languages, a great number of disparate doctrines have been categorized as sharing a core quality—pseudoscientificity, if you will—when in fact they do not. It is based on this diversity that I refer to such beliefs and theories as “fringe” rather than as “pseudo”: Their defining characteristic is the distance from the center of the mainstream scientific consensus in whichever direction, not some essential property they share.

Scholars have by and large tended to ignore fringe science as regrettable sideshows to the main narrative of the history of science, but there is a good deal to be learned by applying the same tools of analysis that have been used to understand mainstream science. This is not, I stress, to imply that there is no difference between hollow‐Earth theories and geophysics; on the contrary, the differences are the point of the analysis. Focusing on the historical and conceptual relationship between the fringe and the core of the various sciences as that blurry border has fluctuated over the centuries provides powerful analytical leverage for understanding where contemporary anti‐science movements come from and how mainstream scientists might address them.

As soon as professionalization blossomed, tagging competing theories as pseudoscientific became an important tool for scientists to define what they understood science to be

The central claim of this essay is that the concept of “pseudoscience” was called into being as the shadow of professional science. Before science became a profession—with formalized training, credentialing, publishing venues, careers—the category of pseudoscience did not exist. As soon as professionalization blossomed, tagging competing theories as pseudoscientific became an important tool for scientists to define what they understood science to be. In fact, despite many decades of strenuous effort by philosophers and historians, a precise definition of “science” remains elusive. It should be noted however that the absence of such definitional clarity has not seriously inhibited the ability of scientists to deepen our understanding of nature tremendously.

Explanation:

8 0
2 years ago
Positive charge Q is placed on a conducting spherical shell with inner radius R1 and outer radius R2. The electric field at a po
gregori [183]

Answer:

E = 0    r <R₁

Explanation:

If we use Gauss's law

      Ф = ∫ E. dA = q_{int} / ε₀

in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.

Consequently by Gauss's law the electric field is ZERO

           E = 0    r <R₁

6 0
3 years ago
Other questions:
  • 8. A 40.0kg block of metal is suspended from a scale and is immersed in water. The dimensions of the block are 12.0cm x 10.0cm x
    5·1 answer
  • • Most of the galaxies in the universe are moving away from
    8·1 answer
  • The Temperatureslider controls the heat of the metal filamentinside the light. Scientists use the Kelvin scaleto measure the tem
    9·1 answer
  • Pretend for a day your non-dominant hand is broken and you can’t use of it. Pay attention to the activities you do every day. Yo
    8·1 answer
  • Please helppppppppppp​
    5·1 answer
  • A 30 kg child is sitting on a swing. Their weight is exerting a downward force on the swing. The ropes are exerting an upward fo
    5·2 answers
  • Ytuugtfghrddfghjiuyhhffdfvhj
    10·2 answers
  • Temperature is the measure of the average kinetic energy of the particles in an object. True False
    15·1 answer
  • A 1.0kg cart moving right at 5.0 m/s on a frictionless track collides and
    9·1 answer
  • In the fishbowl, the glass, water, rocks, and plastic plants are in thermal equilibrium. This situation means the temperature of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!