Answer:
the answer might be the first one A. safe
Answer:
The magnitude and direction of the force applied by Steinberg are approximately 15.192 newtons and 126.704º.
Explanation:
The chew toy is at equilibrium and experimenting three forces from three distinct dogs. The Free Body Diagram depicting the system is attached below. By Newton's Laws we construct the following equations of equilibrium: (<em>Sp</em> is for Spot, <em>F</em> is for Fido and <em>St</em> is for Steinberg) All forces and angles are measured in newtons and sexagesimal degrees, respectively:
(1)
(2)
If we know that
,
and
, then the components of the force done by Steinberg on the chewing toy is:





The magnitud of the force is determined by Pythagorean Theorem:



Since the direction of this force is in the 3rd Quadrant on Cartesian plane, we determine the direction of the force with respect to the eastern semiaxis:


The magnitude and direction of the force applied by Steinberg are approximately 15.192 newtons and 126.704º.
The biological process that directly converts energy from the Sun into chemical energy would be Photosynthesis. It is a process carried out by autotrophic organisms which are predominantly plants and other photosynthetic bacteria.
Answer:
θ = 12.95º
Explanation:
For this exercise it is best to separate the process into two parts, one where they collide and another where the system moves altar the maximum height
Let's start by finding the speed of the bar plus clay ball system, using amount of momentum
The mass of the bar (M = 0.080 kg) and the mass of the clay ball (m = 0.015 kg) with speed (v₀ = 2.0 m / s)
Initial before the crash
p₀ = m v₀
Final after the crash before starting the movement
= (m + M) v
p₀ = 
m v₀ = (m + M) v
v = v₀ m / (m + M)
v = 2.0 0.015 / (0.015 +0.080)
v = 0.316 m / s
With this speed the clay plus bar system comes out, let's use the concept of conservation of mechanical energy
Lower
Em₀ = K = ½ (m + M) v²
Higher
= U = (m + M) g y
Em₀ = 
½ (m + M) v² = (m + M) g y
y = ½ v² / g
y = ½ 0.316² / 9.8
y = 0.00509 m
Let's look for the angle the height from the pivot point is
L = 0.40 / 2 = 0.20 cm
The distance that went up is
y = L - L cos θ
cos θ = (L-y) / L
θ = cos⁻¹ (L-y) / L
θ = cos⁻¹-1 ((0.20 - 0.00509) /0.20)
θ = 12.95º
Answer:
Explanation:
a ) speed of passenger = circumference / time
= 2π R / Time
= 2 x 3.14 x 50 / 60
= 5.23 m /s
b )
centrifugal force = m v² /R
= (882 /9.8 ) x 5.23² / 50
= 77.47 N
Apparent weight at the highest point
real weight - centrifugal force
= 882 - 77.47
= 804.53 N
Apparent weight at the lowest point
real weight + centrifugal force
= 882 +77.47
= 959.47 N
c ) if the passenger’s apparent weight at the highest point were zero
centrifugal force = weight
mv² /R = mg
v² = gR
= 9.8 X 50
v = 22.13 m /s
d )
apparent weight
mg - mv² / R
= 882 - (882 / 9.8 )x 22.13²/50
= 882 + 882
= 1764 N
=