Answer:
stoichiometry is hard but the rest is kinda easy if u pay attention
Explanation:
Answer:
The rate constant of the reaction at 125˚ is
.
Explanation:
The Arrhenius equation is a simple equation that describes the dependent relationship between temperature and the rate constant of a chemical reaction. The Arrhenius equation is written mathematically as


where
is the rate constant,
represents the activation energy of the chemical reaction,
is the gas constant,
is the temperature, and
is the frequency factor.
The frequency factor,
, is a constant that is derived experimentally and numerically that describes the frequency of molecular collisions and their orientation which varies slightly with temperature but this can be assumed to be constant across a small range of temperatures.
Consider that the rate constant be
at an initial temperature
and the rate constant
at a final temperature
, thus


Given that
,
,
,
, and
, therefore,
Answer:
A
Explanation:
always more reactants than products
Answer:
The boiling point is somewhere between 56 and 151 °C
Explanation:
Hello,
In this case, it is possible to compute it via rigorous methods in phase equilibrium by using for example a cubic equation of state to model the vapor phase and a suitable excess Gibbs free energy model for the liquid phase, nonetheless, it is an arduous task. In such a way, since the information about both acetone's and nonane's pure boiling points is given as well as acetone's mole fraction, which points out it is about a binary liquid solution, one could make up the boiling point is somewhere between 56 and 151 °C precising that it should be closer to 151 °C as the mixture is 90% nonane and 10% acetone.
Best regards.