The answer to this question i think would be 8950. Do you have any answer choices.
Answer:
2872.8 N
Explanation:
We have the following information
m =n72kg
Δy = 18m
t = 0.95s.
From here we use the equation
Δy=1/2at2 in order to solve for the acceleration.
So a
=( 2x 18m)/(0.95s²)
= 36/0.9025
= 39.9m/s2.
From there we use the equation
F = ma
F=(72kg) x (39.9)
= 2872.8N.
2872.8N is the average net force exerted on him in the barrel of the cannon.
Thank you!
Answer:
The final velocity of the thrower is and the final velocity of the catcher is .
Explanation:
Given:
The mass of the thrower, .
The mass of the catcher, .
The mass of the ball, .
Initial velocity of the thrower,
Final velocity of the ball,
Initial velocity of the catcher,
Consider that the final velocity of the thrower is . From the conservation of momentum,
Consider that the final velocity of the catcher is . From the conservation of momentum,
Thus, the final velocity of thrower is and that for the catcher is .
The car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
<h3>Average velocity of the car</h3>
The average velocity of the car is calculated as follows;
x(t) = a + bt + ct2
v = dx/dt
v(t) = b + 2ct
v(0) = -10.1 m/s + 2(1.1)(0) = -10.1 m/s
v(10) = -10.1 + 2(1.1)(10) = 11.9 m/s
<h3>Average velocity</h3>
V = ¹/₂[v(0) + v(10)]
V = ¹/₂ (-10.1 + 11.9 )
V = 0.9 m/s
Thus, the car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
Learn more about velocity here: brainly.com/question/4931057
#SPJ1