Given:
There are given that the parent functions as a cosine function:
Where,
The amplitude of the function is 9.
The vertical shift is 11 units down.
Explanation:
To find the cosine function, we need to see the standard form of the cosine function:

Where,
a is the amplitude of the function,
Now,
According to the question:
The amplitude of the function is 9, which means:

The vertical shift is 11 units down, which means:

For period:

Final answer:
Hence, the cosine function is shown below;
Answer:
trapezium?
Step-by-step explanation:
Using the quadratic equation we get:

Factoring out 2 we get

Factoring out the imaginary number:

So b.
Answer:
one
Step-by-step explanation:
When a system of equations is graphed, the solution is the coordinate that is plotted at the intersection of the two lines.
If the two lines cross once, there is only one solution.
If the two lines are on top of each other then there are infinitely many solutions.
If the two lines are parallel ( and never touch ) then there are no solutions
By looking at the graph we notice the two lines intersect once. So we can conclude that there is only one solution.
<span>Simplifying
(5b + -9) + -3(8 + -2b) = 0
Reorder the terms:
(-9 + 5b) + -3(8 + -2b) = 0
Remove parenthesis around (-9 + 5b)
-9 + 5b + -3(8 + -2b) = 0
-9 + 5b + (8 * -3 + -2b * -3) = 0
-9 + 5b + (-24 + 6b) = 0
Reorder the terms:
-9 + -24 + 5b + 6b = 0
Combine like terms: -9 + -24 = -33
-33 + 5b + 6b = 0
Combine like terms: 5b + 6b = 11b
-33 + 11b = 0
Solving
-33 + 11b = 0
Solving for variable 'b'.
Move all terms containing b to the left, all other terms to the right.
Add '33' to each side of the equation.
-33 + 33 + 11b = 0 + 33
Combine like terms: -33 + 33 = 0
0 + 11b = 0 + 33
11b = 0 + 33
Combine like terms: 0 + 33 = 33
11b = 33</span>