I should think that Yolanda should use litmus paper throughout the reaction as its color will tell when the mixture is neutral and therefore then, when she can stop adding either the hydrochloric acid or the sodium hydroxide or if one or the other needs to be added to make the solution approach neutral. Blue litmus paper stays blue in a neutral solution, but will turn red in an acidic solution.
Memorize this and you'll be able to do ALL of these: <em>1 kg = 1,000 g</em>
So if you have some grams, divide the number by 1,000 to get kilograms.
1,000 g = 1.000 kg
500 g = 0.500 kg
100 g = 0.100 kg
50 g = 0.050 kg
20 g = 0.020 kg
10 g = 0.010 kg
Your body continues to move unless stopped by the seatbelt. An object in motion will remain in motion. Since your body was already moving it will continue to.
A. The proeutectoid phase is Fe₃c because 0.95 wt/c is greater than the eutectoid composition which is 0.76 wt/c
b. We determine how much total territe and cementite form, we apply the lever rule expressions yields.
Wx = (fe₃c-co/cfe₃ c-cx = 6.70- 0.95/6.70- 0.022 = 0.86
The total cementite
Wfe₃C = 10-Cx/ Cfe₃c -Cx = 0.95 - 0.022/6.70 - 0.022 = 0.14
The total cementite which is formed is
(0.14) × (3.5kg) = 0.49kg
c. We calculate the pearule and the procutectoid phase which cementite form the equation
Ci = 0.95 wt/c
Wp = 6.70 -ci/6.70 - 0.76 = 6.70 -0.95/6.70 - 0.76 = 0.97
0.97 corresponds to mass.
W fe₃ C¹ = Ci - 0.76/5.94 = 0.03
∴ It is equivalent to
(0.03) × (3.5) = 0.11kg of total of 3.5kg mass.
Answer:
h = 1.02 m
Explanation:
This is a fluid mechanics exercise, where the pressure is given by
P =
+ ρ g h
The gauge pressure is
P -
= ρ g h
In this case the upper part of the tube we have the atmospheric pressure. and the diver can exert a pressure 10 KPa below the outside pressure, this must be the gauge pressure
= P - 
= ρ g h
h =
/ ρ g
calculate
h = 10 103 / (1000 9.8)
h = 1.02 m
This is the depth at which man can breathe