Given :
Two forces act on a 6.00-kg object. One of the forces is 10.0 N.
Acceleration of object 2 m/s².
To Find :
The greatest possible magnitude of the other force.\
Solution :
Let, other force is f.
So, net force, F = 10 + f.
Now, acceleration is given by :

Therefore, the greatest possible magnitude of the other force is 2 N.
Hence, this is the required solution.
Given Information:
Mass of sock = 0.23 kg
Stretched length of sock = x = 2.54 cm = 0.0254 m
Required Information:
Spring constant = k = ?
Answer:
Spring constant = k = 88.82 N/m
Explanation:
We know from the Hook's law that
F = kx
Where k is spring constant, F is the applied force and x is length of sock being stretched.
k = F/x
Where F is given by
F = mg
F = 0.23*9.81
F = 2.256 N
So the spring constant is
k = 2.256/0.0254
k = 88.82 N/m
Therefore, the spring constant of the sock is 88.82 N/m
Answer:
nreaker
Explanation:
A switch that automatically interrupts or shuts off an electric current at the first indication of a overload
Explanation:
When a car is breaking, the brakes apply pressure/force onto the wheels(car) which allows it to slow down.
When the car collides with an object, it is exerting a force upon that object to which it applies an equal and opposite force on the car.
I think this is what you are asking for.
Hope This Helps :)
Variables:
Source charge, Q = 3 micro C = 3 * 10^ - 6 C
E = electric field = 2.86 * 10 ^5 N/C
K = 8.99 * 10^9 N * m^2 / C
d = distance = ?
Formula:
E = K * Q / (d^2) => d^2 = K * Q / E
=> d^2 = 8.99 * 10^9 N * m^2 / C * 3 * 10^ -6 C / (2.86 * 10^ 5 N/C)
d^2 = 9.43 * 10 ^ -2 m^2
=> d = 3.07 * 10^-1 m
Answer: 0.307 m
Note: it is a long distance due to the Electric field is very low