Answer:
1 Frequency
2 Wavelength
3 Amplitude
4 Crest
Hope it helps pls mark brainliest
What is the weight of a 4.2 kg bowling ball on Mars?
Answer:
1.59 kg
Explanation:
The formula is:
<u>F = G((Mm)/r2)
</u>
F is the gravitational force between two objects,
G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),
M is the planet's mass (kg),
m is your mass (kg), and
r is the distance (m) between the centers of the two masses (the planet's radius).
Hope this helps
--Jay
Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.