Let F = the downstream speed of the water.
<span>Then the boat's upstream speed is: 15 - F </span>
<span>The boat's downstream speed is: 15 + F </span>
<span>Assume both the journeys mentioned take T hours, then using "speed x time = distance" we get: </span>
<span>Downstream journey: (15 + F)T = 140 </span>
<span>Upstream journey: (15 - F)T = 35 </span>
<span>Add the two formulae together: </span>
<span>(15 + F)T + (15 - F)T = 140 + 35 </span>
<span>15T + FT + 15T - FT = 175 </span>
<span>30T = 175 </span>
<span>T = 35/6 </span>
<span>Use one of the equations to find F: </span>
<span>(15 + F)T = 140 </span>
<span>15 + F = 140/T </span>
<span>F = 140/T - 15 </span>
<span>F = 140/(35/6) - 15 </span>
<span>F = 24 - 15 </span>
<span>F = 9 </span>
<span>i.e. the downstream speed of the water is 9 kph </span>
<span>Therefore, the boat's speed downstream is 15 + F = 15 + 9 = 24 kph.
the answer is: *24kph*</span>
They do it by followinng the centeral nervous system
Answer:
total number of electron in 1 litter is 3.34 ×
electron
Explanation:
given data
mass per mole = 18 g/mol
no of electron = 10
to find out
how many electron in 1 liter of water
solution
we know molecules per gram mole is 6.02 ×
molecules
no of moles is 1
so
total number of electron in water is = no of electron ×molecules per gram mole × no of moles
total number of electron in water is = 10 × 6.02 ×
× 1
total number of electron in water is = 6.02×
electron
and
we know
mass = density × volume ..........1
here we know density of water is 1000 kg/m
and volume = 1 litter = 1 ×
m³
mass of 1 litter = 1000 × 1 × 
mass = 1000 g
so
total number of electron in 1 litter = mass of 1 litter × 
total number of electron in 1 litter = 1000 × 
total number of electron in 1 litter is 3.34 ×
electron
the answer is A. The aluminum has 0.84 ohms more resistance.
Answer:
High pressure inside the giant planet
Explanation:
As we move in the interior of the giant planet, the pressure and temperature in the interior of the planet increases. Since, the giant planets have hardly any solid surface and thus they are mostly constituted of atmosphere.
Also, the gravitational forces keep even the lightest of the matter bound in it contributing to the large mass of the planet.
If we look at the order of the magnitude of the temperature of these giant planets than nothing should be able to stay in liquid form but as the depth of the planet increases with the increase in temperature, pressure also increases which keeps the particle of the matter in compressed form.
Thus even at such high order of magnitude water is still found in liquid state in the interior of the planet.