Answer:
-58.876 kJ
Explanation:
m = mass of air = 1 kg
T₁ = Initial temperature = 15°C
T₂ = Final temperature = 97°C
Cp = Specific heat at constant pressure = 1.005 kJ/kgk
Cv = Specific heat at constant volume = 0.718 kJ/kgk
W = Work done
Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)
ΔU = Change in internal energy
Q = W+ΔU
⇒Q = W+mCvΔT
⇒0 = W+mCvΔT
⇒W = -mCvΔT
⇒Q = -1×0.718×(97-15)
⇒Q = -58.716 kJ
Answer:
please write neater
Explanation:
can you write neater so I can answer th question but also is a equal to b
The correct answer is: Option (A) 75 J
Explanation:
First, be careful with the units here. As you can see it is mentioned that there is a 50N box. It means that the weight (<em>mg</em>) of the box is given as the unit is <em>Newton</em>, not its mass (which is in kg).
As,
Potential-energy = mass * acceleration-due-to-gravity * height
PE = m*g*h --- (A)
In equation (A), mg is actually the weight of the box, which is given.
mg = 50N
h = height = 1.5m
Plug the values in equation (A):
PE = 50 * 1.5 = <em>75 J (Option A)</em>
Answer:
2560J
Explanation:
By definition the kinetic energy can be calculated in the following way:
K = (mv²)/2 = 80kg·(8.0m/s)²/2 = 2560 J
Answer:
C. turtles with genes for long necks had a better chance of surviving to reach reproductive age.
Explanation:
The turtles that had long necks were more fit to the environmnet in which they were lovated and were able to grow larger and have more reproductive time because of their ability to feed on grass and small shrubs, this helped them always haev food available, and made them the dominant gene eventually.