1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
1 year ago
15

21. A 1000-kg automobile moving with a speed of 24 m/s relative to the road collides with a 500-kg automobile initially at rest.

If the two stick together, what is the velocity in m/s of the two cars after the collision according to an observer in a truck moving 10 m/s in the same direction as the moving cars
Physics
1 answer:
Luda [366]1 year ago
4 0

A truck is moving with less velocity in the direction in which the truck is moving earlier because the truck has more momentum.

<h3 /><h3>In which direction the truck moves?</h3>

A truck is moving with the velocity of 10 m/s in the same direction in which the truck is moving earlier because the truck has more mass so it has more momentum. Due to collision, the velocity of the truck is slow down but can't be stopped because of high momentum in the truck.

So we can conclude that a truck is moving with less velocity in the direction in which the truck is moving earlier because the truck has more momentum.

Learn more about momentum here: brainly.com/question/7538238

#SPJ1

You might be interested in
during a journey, a car travels at 40 km in 2.5 hours, next 62 km in 3 hours, then took a break for 30 minutes, again travelled
wlad13 [49]
45mph is the answer if you do the math right
6 0
3 years ago
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
2 years ago
A dart gun consists of a horizontal spring with k = 52 Newtons/m that is compressed 43
gulaghasi [49]

Answer:

299 m/s^2

Explanation:

When a spring is compressed, the force exerted by the spring is given by:

F=kx

where

k is the spring constant

x is the compression of the spring

In this problem we have:

k = 52 N/m is the spring constant

x = 43 cm = 0.43 m is the compression

Therefore, the force exerted by the spring on the dart is

F=(52)(0.43)=22.4 N

Now we can apply Newton' second law of motion to calculate the acceleration of the dart:

F=ma

where

F = 22.4 N is the force exerted on the dart by the spring

m = 75 g = 0.075 kg is the mass of the dart

a is its acceleration

Solving for a,

a=\frac{F}{m}=\frac{22.4}{0.075}=299 m/s^2

7 0
2 years ago
As a pelican flies through the air, it flaps its wings, thereby pushing down on the air below. What is the reaction force?
madam [21]

Answer:

the reaction force in this situation would be B

Explanation:

The action is the wings pushing down whilst the reaction is the air pushing up which allow the bird to fly .

plz mark brainliest to help me lvl up :P

7 0
3 years ago
Read 2 more answers
SCIENCE HELP! PLEASE HELP URGENT!
Nonamiya [84]
It is also tripled, there is a rule to everything, whatever you do to one thing, you do the exact thing to the other. Hope this solves it :)
6 0
2 years ago
Other questions:
  • Help please I really need help in this one
    13·1 answer
  • Calculate the amount of energy produced in joules by 100- watt light bulb lit for 2.5 hours.
    9·1 answer
  • A block of plastic in the shape of a rectangular solid that has height 8.00 cm and area A for its top and bottom surfaces is flo
    10·1 answer
  • If 125 j of heat energy is applied to a block of silver weighing 29.3 g, by how many degrees will the tem- perature of the silve
    5·1 answer
  • What is weight in Newton’s, of a 50.-kg person on earth
    6·1 answer
  • The Electric Potential of the Earth The Earth has a vertical electric field with a magnitude of approximately 100 V/m near its s
    12·1 answer
  • In which stage in the life cycle of a cnidarian is the organism anchored to the bitten of the ocean or lake where it lives
    10·1 answer
  • A rigid tank initially contains 1.4 kg saturated liquid water at 200◦C. At this state, 25 percent of the volumeis occupied by wa
    14·1 answer
  • You are trying to tune the fifth string on your guitar, which is supposed to sound the A2 note (i.e., a note two octaves below A
    10·1 answer
  • The chart below lists the densities of various gemstones. If a gemstone has a mass of 6.24 g and a volume of 1.98 cm cubed, whic
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!