Answer:
The availability of system will be 0.9
Explanation:
We have given mean time of failure = 900 hours
Mean time [to repair = 100 hour
We have to find availability of system
Availability of system is given by 
So availability of system 
So the availability of system will be 0.9
Answer:
Pressure = 115.6 psia
Explanation:
Given:
v=800ft/s
Air temperature = 10 psia
Air pressure = 20F
Compression pressure ratio = 8
temperature at turbine inlet = 2200F
Conversion:
1 Btu =775.5 ft lbf,
= 32.2 lbm.ft/lbf.s², 1Btu/lbm=25037ft²/s²
Air standard assumptions:
= 0.0240Btu/lbm.°R, R = 53.34ft.lbf/lbm.°R = 1717.5ft²/s².°R 0.0686Btu/lbm.°R
k= 1.4
Energy balance:
As enthalpy exerts more influence than the kinetic energy inside the engine, kinetic energy of the fluid inside the engine is negligible
hence 

= 20+460 = 480°R
= 533.25°R
Pressure at the inlet of compressor at isentropic condition

=
= 14.45 psia
Answer:
q=39.15 W/m²
Explanation:
We know that
Thermal resistance due to conductivity given as
R=L/KA
Thermal resistance due to heat transfer coefficient given as
R=1/hA
Total thermal resistance

Now by putting the values


We know that
Q=ΔT/R


So heat transfer per unit volume is 39.15 W/m²
q=39.15 W/m²
A question the design team should answer before handing off the designs is: are the designs a true representation of the intended end user experience?
<h3>What is a website?</h3>
A website can be defined as a collective name that is used to describe series of webpages that are interconnected or linked together with the same domain name.
In Computer technology, the main goal of a high-fidelity prototype is to understand how end users would interact with a website and areas to improve the design.
In conclusion, the design team should answer whether or not the designs are a true representation of the intended end user experience before handing off the designs.
Read more on website here: brainly.com/question/26324021
Answer:
b. equal to the specific entropy of the gas at the inlet.
Explanation:
Isentropic process is the process in which the entropy of the system remains unchanged. The word isentropic is formed from the combination of the prefix "iso" which means "equal" and the word entropy.
If a process is completely reversible, without the need to provide energy in the form of heat, then the process is isentropic.