Answer:
Option B. 2Mg(s) + O2 (g) —> 2MgO (s)
Explanation:
From the question given above,
We were told that:
2 solid Mg atoms bond with O2 gas to produce solid MgO.
This can be represented by an equation as follow:
2Mg(s) + O2 (g) —> MgO (s)
Next, we shall balance the above equation as follow:
2Mg(s) + O2 (g) —> MgO (s)
There are 2 atoms of Mg on the left side and 1 atom on the right side. It can be balance by putting 2 in front of MgO as shown below:
2Mg(s) + O2 (g) —> 2MgO (s)
Now, the equation is balanced.
PH of solution at 25ºC = 8.3
![[ H_3O^+] = 10 ^{-pH}](https://tex.z-dn.net/?f=%5B%20H_3O%5E%2B%5D%20%3D%2010%20%5E%7B-pH%7D%20)
![{H_3O^+] = 10 ^{-8.3}](https://tex.z-dn.net/?f=%7BH_3O%5E%2B%5D%20%3D%2010%20%5E%7B-8.3%7D)
![[H_3O^+] = 5.011*10^{-9} M](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%3D%205.011%2A10%5E%7B-9%7D%20%20M)
hope this helps!
<u>Answer:</u> The molality of potassium hydroxide solution is 0.608 m
<u>Explanation:</u>
We are given:
3.301 mass % of potassium hydroxide solution.
This means that 3.301 grams of potassium hydroxide is present in 100 grams of solution
Mass of solvent = Mass of solution - Mass of solute (KOH)
Mass of solvent = (100 - 3.301) g = 96.699 g
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (KOH) = 3.301 g
= Molar mass of solute (KOH) = 56.1 g/mol
= Mass of solvent = 96.699 g
Putting values in above equation, we get:

Hence, the molality of potassium hydroxide solution is 0.608 m
The answer is JESUS BECAUSE HE IS ALWAYS THE ANSWER
Answer:
46
Explanation:
Sodium metal has a molar mass of
22.99