Answer:
Fluorine
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Periodic Trends
- Electronegativity - the tendency for an element to attract an electron to itself
- Z-effective and Coulomb's Law, Forces of Attraction
Explanation:
The Periodic Trend for Electronegativity is up and to the right of the Periodic Table.
Fluorine is Element 9 and has 9 protons. Radium is Element 88 and has 88 protons. Therefore, Radium has a bigger Zeff than Flourine.
However, since Radium is in Period 7 while Fluorine is in Period 2, Radium has more core e⁻ than Fluorine does. This will create a much larger shielding effect, causing Radium's outermost e⁻ to have less FOA between them. Fluorine, since it has less core e⁻, the FOA between the nucleus and outershell e⁻ will be much stronger.
Therefore, Fluorine would attract an electron more than Radium, thus bringing us to the conclusion that Fluorine has a higher electronegativity.
Liquid silver nitrate and liquid sodium chloride combined forms the substance silver chloride.
Today, natural sciences<span> are more </span>commonly divided<span> into life </span>sciences<span>, such as botany and zoology; and physical </span>sciences<span>, which include physics, chemistry, geology, astronomy and materials </span>science<span>.</span>
The insulating ability of a substance is a physical characteristic and not a chemical one. A physical property is a characteristic that distinguishes one type of matter from the other and can be observed without changing the identity of the substance. A chemical property describes how one substance changes into another in a chemical reaction.
In order to determine the number of protons in 20.02 mol of Ne, we use Avogadro's number to convert the number of moles to number of atoms, 1 mol = 6.022 x 10^23 atoms. From there, we must know the number of protons in a Neon atom, which is 10. Thus, the formula will be:
(20.02 mol Ne)x(6.022 x 10^23 atoms/mol)x(10 protons/1 atom Ne) = 1.2056 x 10^26 protons