No, according to physics no work has been done.
Work must have been done by muscular force but in terms of physics no work has been done.
In physics,work is said to be done only if the force applied produced some kind of displacement in the direction of force.
In this example provided, no work has been done since the boulder doesn't get displaced,it continues to remain at its original position.
Hope This Helps You!
Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.
The correct answer is hydrogen<span>, and </span>oxygen<span>. </span>
Answer:
49.35 mL
Explanation:
Given: 56.2 mL of gas
To find: volume that 56.2 mL of gas at 820 mm of Hg would occupy at 720 mm of Hg
Solution:
At 820 mm of Hg, volume of gas is 56.2 mL
At 1 mm of Hg, volume of gas is
At 720 mm of Hg, volume of gas is
In order to calculate how much heat is needed to raise the temperature you need to use the formula q =mass x specific heat x (final temperature- initial temperature) where q represents heat being absorbed or released. Before you begin you would convert kg to g because the specific heat is measure in g. So you would set up the equation as q = 358 g x .092 x (60-23 degrees Celsius) which would give you 1218.6