Reactivity - Reactivity refers to how likely or vigorously an atom is to react with other substances. This is usually determined by how easily electrons can be removed (ionization energy) and how badly they want to take other atom's electrons (electronegativity) because it is the transfer/interaction of electrons that is the basis of chemical reactions.
Metals
Period - reactivity decreases as you go from left to right across a period.
Group - reactivity increases as you go down a group
Why? The farther to the left and down the periodic chart you go, the easier it is for electrons to be given or taken away, resulting in higher reactivity.
Non-metals
Period - reactivity increases as you go from the left to the right across a period.
Group - reactivity decreases as you go down the group.
Why? The farther right and up you go on the periodic table, the higher the electronegativity, resulting in a more vigorous exchange of electron
Answer:
pH= 0.92
Explanation:
HNO3-> H^+ +NO3^-
HNO3 is a strong acid, so it fully dissociates
[HNO3] = 0.12M [H^+] = 0.12M
pH= -log[H^+]
pH=-log[.12] = 0.92
pH = 0.92
Answer:
4.6 × 10²³ molecules:
Step-by-step solution
You will need a balanced equation with masses, moles, and molar masses, so let's gather the information in one place:
M_r: 22.99
2Na + 2H₂O ⟶ 2NaOH + H₂
m/g: 35
1. Calculate the <em>moles of Na
</em>
Moles of Na = 35 g Na × (1 mol Na/22.99 g Na)
Moles of Na = 1.52 mol Na
2. Calculate the <em>moles of H₂
</em>
Moles of H₂ = 1.52 mol Na × (1 mol H₂/2 mol Na)
Moles of H₂= 0.761 mol H₂
3. Calculate the molecules of H₂
6.022 × 10²³ molecules H₂ = 1 mol H₂
Molecules of H₂ = 0.761 × (6.022 × 10²³
/1)
Molecules of H₂ = 4.6 × 10²³ molecules H₂
The reaction forms 4.6 × 10²³ molecules of H₂.
Answer:
animal and plant are the example of eukaryotes