Answer: The Diver's air tank is filled with oxygen gas.
The filling of air tank while keeping in water can be explained in reference to the Charles' Law.
Charles' Law: It states that the volume of the ideal gas is directly proportional to the absolute temperature at constant pressure.
(at constant Pressure)
The Scuba tank contains cold water and is present at high pressure. The gas which is put in the tank will be compact and would not expand. As the temperature is low inside the tank, hence by using Charles' Law, the volume will also decrease inside the tank.
When the air tank is filled, it is always kept in a tub of water because the pressure is high and hence, more oxygen gas can be filled inside the air tank.
Answer:
a substance made by mixing other substances together.
Explanation:
A mixture is a substance made by mixing two or more substances together.
answer:
in plants
Transport manufactured food from the leaves to others parts of the plant
Facilitates gaseous exchange through the stomata in the leaves to other parts of the plant
in animal
Exchange of respiratory gases across respiratory services
Excretion of nitrogenous waste in some unicellular organisms
Explanation:
Hope it benefit
Answer:
Fluorine
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Periodic Trends
- Electronegativity - the tendency for an element to attract an electron to itself
- Z-effective and Coulomb's Law, Forces of Attraction
Explanation:
The Periodic Trend for Electronegativity is up and to the right of the Periodic Table.
Fluorine is Element 9 and has 9 protons. Radium is Element 88 and has 88 protons. Therefore, Radium has a bigger Zeff than Flourine.
However, since Radium is in Period 7 while Fluorine is in Period 2, Radium has more core e⁻ than Fluorine does. This will create a much larger shielding effect, causing Radium's outermost e⁻ to have less FOA between them. Fluorine, since it has less core e⁻, the FOA between the nucleus and outershell e⁻ will be much stronger.
Therefore, Fluorine would attract an electron more than Radium, thus bringing us to the conclusion that Fluorine has a higher electronegativity.
Answer:
pH → 7.46
Explanation:
We begin with the autoionization of water. This equilibrium reaction is:
2H₂O ⇄ H₃O⁺ + OH⁻ Kw = 1×10⁻¹⁴ at 25°C
Kw = [H₃O⁺] . [OH⁻]
We do not consider [H₂O] in the expression for the constant.
[H₃O⁺] = [OH⁻] = √1×10⁻¹⁴ → 1×10⁻⁷ M
Kw depends on the temperature
0.12×10⁻¹⁴ = [H₃O⁺] . [OH⁻] → [H₃O⁺] = [OH⁻] at 0°C
√0.12×10⁻¹⁴ = [H₃O⁺] → 3.46×10⁻⁸ M
- log [H₃O⁺] = pH
pH = - log 3.46×10⁻⁸ → 7.46