Protons: charge +1, have a mass of 1 and are found in the nucleus
Neutrons: charge 0, have a mass of 1 and are found in the nucleus
Electrons: charge -1, have a mass of 1/840 and are found on the outside of the nucleus
hope that helps
Answer:
Option D = 0.2 Kj
Explanation:
Given data:
Mass of diethyl ether = 1.0 g
Hvap = 15.7 Kj / mol
Heat absorbed = ?
Solution:
Q = mass × Hvap / molar mass
Q = 1.0 g × 15.7 Kj / mol / 74.12 g/mol
Q = 15.7 Kj / 74.12
Q = 0.212 KJ
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml
Answer:
Like stratovolcanoes, they can produce violent, explosive eruptions, but their lava generally does not flow far from the originating vent. Cryptodomes The 1980 eruption of Mount St. Helens was an example; lava beneath the surface of the mountain created an upward bulge which slid down the north side of the mountain.
Explanation: