Answer:
R = 6.3456 10⁴ mile
Explanation:
For this exercise we will use Newton's second law where force is gravitational force
F = m a
The satellite is in a circular orbit therefore the acceleration is centripetal
a = v² / r
Where the distance is taken from the center of the Earth
G m M / r² = m v² / r
G M / r = v²
The speed module is constant, let's use the uniform motion relationships, with the length of the circle is
d = 2π r
v = d / t
The time for a full turn is called period (T)
Let's replace
G M / r = (2π r / T)²
r³ = G M T²²2 / 4π²
r = ∛ (G M T² / 4π²)
We have the magnitudes in several types of units
T = 88.59 h (3600 s / 1h) = 3.189 10⁵ s
Re = 6.37 10⁶ m
Let's calculate
r = ∛ (6.67 10⁻¹¹ 5.98 10²⁴ (3,189 10⁵)²/4π²)
r = ∛ (1.027487 10²⁴)
r = 1.0847 10⁸ m
This is the distance from the center of the Earth, the distance you want the surface is
R = r - Re
R = 108.47 10⁶ - 6.37 10⁶
R = 102.1 10⁶ m
Let's reduce to miles
R = 102.1 10⁶ m (1 mile / 1609 m)
R = 6.3456 10⁴ mile
Answer:
Calculate the work done by a 47 N force pushing a 0.025 kg pencil 0.25 m ... A boy on a bicycle drags a wagon full of newspapers at 0.80 m/s for 30 min ... A power mower does 9.00 x 105 J of work in 0.500 h. ... p: W 2200ch: w will320,000 T/ ... How much electrical energy (in kilowatt hours) would a 60.0 W light bulb use in ..
Explanation:
Answer:
L= 0.059 mH
Explanation:
Given that
R = 855 Ω and C = 6.25 μF
V= 84 V
Frequency
ω = 51900 1/s
We know that

L=Inductance
C=Capacitance
ω =angular Frequency
ω² L C =1
(51900)² x L x 6.25 x 10⁻⁶ = 1
L= 5.99 x 10⁻⁵ H
L= 0.059 mH
Answer:
v’ =(
) v
we see that the greater the difference, the more the sled slows down.
friction force
Explanation:
When the man pushes the sled he does work and the sled acquires a speed and as long as it is supplied with an energy equal to the work of the chipping force with the snow, the speed is maintained.
When he jumps on the sled, a collision occurs and the initial moment
p₀ = mv
is increased by the increase in mass
m_f= (m + M_{man} ) v '
In this case there is no longer any external force applied and the only external force is friction, which causes the sled to stop, even when it is small, but the significant reduction in speed is due to the increase in masses.
p₀ = p_f
mv = (m + M_{man}) v '
v ’=
v
v’ =(
) v
Therefore, we see that the greater the difference, the more the sled slows down.
The only forces that act on the sled with the man are the friction that is responsible for the decrease in speed and weight with the normal
Answer:
420000N
Explanation:
Given parameters:
Mass of the train = 5.6 x 10⁵kg
Acceleration = 0.75m/s²
Unknown:
Resultant force = ?
Solution:
According to newton's second law, force is the product of mass and acceleration;
Force = mass x acceleration
Resultant force that acts on the train is given below;
Force = 5.6 x 10⁵kg x 0.75m/s² = 420000N