Answer:
16.2 cents
Explanation:
Given that a homeowner consumes 260 kWh of energy in July when the family is on vacation most of the time.
Where Base monthly charge of $10.00. First 100 kWh per month at 16 cents/kWh. Next 200 kWh per month at 10 cents/kWh. Over 300 kWh per month at 6 cents/kWh.
For the first 100 kWh:
16 cent × 100 = 1600 cents = 16 dollars
Since 1 dollar = 100 cents
For the remaining energy:
260 - 100 = 160 kwh
10 cents × 160 = 1600 cents = 16 dollars
The total cost = 10 + 16 + 16 = 42 dollars
Note that the base monthly of 10 dollars is added.
The cost of 260 kWh of energy consumption in July is 42 dollars
To determine the average cost per kWh for the month of July, divide the total cost by the total energy consumed.
That is, 42 / 260 = 0.1615 dollars
Convert it to cents by multiplying the result by 100.
0.1615 × 100 = 16.15 cents
Approximately 16.2 cents
The advantages that can be associated to
drawings and symbols over written descriptions in engineering design and prototyping process are;
Communicate design ideas as well as technical information to engineers.
Symbols and drawings can be universal which means it is easy to interpret any where by professionals.
- An engineering drawing serves as complex dimensional object and symbol use by engineer to communicate.
- Drawings and symbols makes it easier to communicate design ideas and technical information to engineers and and how the process will go.
Therefore, drawings and symbols is universal to all engineer unlike written one.
Learn more at:
brainly.com/question/20925313?referrer=searchResults
Answer:
a. 4
b. 1 m
Explanation:
According to the question, the data is as follows
The Density of water at 20 degrees celcius is 1000 kg/m^3
Viscosity is 0.001kg/m/.s
Velocity V = 25 cm/s
V = 0.25 m/s
Now
a. The creeping motion is
As we know that
Reynold Number = (Density of water × V × d) ÷ (Viscosity)
1 = (1,000 × 0.25 × d) ÷ 0.0001
d = (1 × 0.001) ÷ (1,000 × 0.25)
= 4E - 06^m
= 4
b. Now the sphere diameter is
Reynold Number = (Density of water × V × d) ÷ (Viscosity)
250,000 = (1,000 × 0.25 × d) ÷ 0.0001
d = (250,000 × 0.001) ÷ (1,000 × 0.25)
= 1 m
Answer:
The Bailey family has flourished during its business’ 110-year history. But Bailey Nurseries’ leaders still operate with the belief that the family doesn’t always know best. The company has grown from a one-man operation selling fruit trees and ornamental shrubs to one of the largest wholesale nurseries in the United States, thanks to insights from those who are family and those who aren’t.
“For a business to thrive, you have to ask for outside help,” says Terri McEnaney, president of the Newport-based company and a fourth-generation family member. “We get an outside perspective through family business programs, advisors and our board, because you can get a bit ingrained in your own way of thinking.”
When Bailey Nurseries chose its current leader in 2000, it brought in a facilitator who gathered insights from key employees, board members and owners. Third-generation leaders (and brothers) Gordie and Rod Bailey picked Rod’s daughter McEnaney, who had experience both inside and outside the company.
Explanation:
Answer:
Explanation:
We know that Drag force

Where
is the drag force constant.
A is the projected area.
V is the velocity.
ρ is the density of fluid.
Form the above expression of drag force we can say that drag force depends on the area .So We should need to take care of correct are before finding drag force on body.
Example:
When we place our hand out of the window in a moving car ,we feel a force in the opposite direction and feel like some one trying to pull our hand .This pulling force is nothing but it is drag force.