1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
12

Which of the following procedures best applies to assessing the embodied energy of a building?

Engineering
1 answer:
galina1969 [7]3 years ago
5 0

analyzing building materials???????????? but i can try i think it is analyzing the materials of the building

You might be interested in
All brake lights are dimmer than normal. Technician A says that bad bulbs could be the cause. Technician B says that high resist
yarga [219]

Answer:

All Brake lights are dimmer than normal because high resistance in the brake switch could be the cause according to Technician B.

Explanation:

According to Technician A

When the bulb is faulty then no current will flow through bulb and it will be open circuit.So no light will produce in bulb .

According to Technician B

When a high resistance inserted in series  circuit the voltage across each resistance is reduced and this cause the light glow dimly.

Formula of resistance in series circuit

Rt=r1+r2+r3......

5 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
3 years ago
A pump with a power of 5 kW (pump power, and not useful pump power) and an efficiency of 72 percent is used to pump water from a
almond37 [142]

Answer:

a) The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump is 245.175 kilopascals.

Explanation:

a) Let suppose that pump works at steady state. The mass flow rate of the water (\dot m), in kilograms per second, is determined by following formula:

\dot m = \frac{\eta \cdot \dot W}{g\cdot H} (1)

Where:

\dot W - Pump power, in watts.

\eta - Efficiency, no unit.

g - Gravitational acceleration, in meters per square second.

H - Hydrostatic column, in meters.

If we know that \eta = 0.72, \dot W = 5000\,W, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the mass flow rate of water is:

\dot m = 14.683\,\frac{kg}{s}

The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump (\Delta P), in pascals, is determined by this equation:

\Delta P = \rho\cdot g\cdot H (2)

Where \rho is the density of water, in kilograms per cubic meter.

If we know that \rho = 1000\,\frac{kg}{m^{3}}, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the pressure difference is:

\Delta P = 245175\,Pa

The pressure difference across the pump is 245.175 kilopascals.

4 0
3 years ago
Steam enters the turbine of a power plant operating on the Rankine cycle at 3300 kPa and exhausts at 50 kPa. To show the effect
maw [93]

Answer:

Thermal efficiency of cycle = 0.314

Quality of exhaust steam = 0.959

Explanation:

3 0
4 years ago
The National Park Service is waiting on your recommendation.
maksim [4K]

The hypothesis that would help restore equilibrium is reintroduce wolves in the park or into the forest.

<h3>What is  reintroduce?</h3>

To reintroduce, is a term that means to revive, reinstate, or bring back something.

Note that based on the right recommendation needed by National Park Service, one can say that the best hypothesis that would help restore equilibrium is reintroduce wolves in the park or into the forest  as it will help restore balance.

Learn more about hypothesis from

brainly.com/question/24149728

#SPJ1

8 0
2 years ago
Other questions:
  • Please help me with this question​
    8·1 answer
  • At the end of a power distribution system, a certain feeder supplies three distribution transformer, each one supplying a group
    8·1 answer
  • 5. Identify the pros and cons of<br> manufactured siding.
    12·1 answer
  • Question 9 of 25
    12·1 answer
  • A lab technician is ordered to take a sample of your blood. As she inserts the needle, she says, "My, you have tough skin!" What
    14·1 answer
  • Heat is applied to a rigid tank containing water initially at 200C, with a quality of 0.25, until the pressure reaches 8 MPa. De
    8·1 answer
  • What three training organizations are important for Union Masons?
    14·1 answer
  • Un material determinado tiene un espesor de 30 cm y una conductividad térmica (K) de 0,04 w/m°C. En un instante dado la distribu
    13·1 answer
  • This might count as engineering, I'm not sure as this is IT
    8·1 answer
  • Where would outdoor Air quality monitors need to be placed to properly record data?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!