Answer:
C. Both technicians A and B
Explanation:
Both technicians are absolutely correct because a functional test light is meant to light on both test point if the fuse is working fine which implies that, if the test light doesn't light on both sides then there must be a fault with the fuse. So, both technicians A and B are very correct.
Answer:
Energy of ultra violet photons < Energy of radio waves
Wavelength of ultra violet photons > Wavelength of radio waves
Explanation:
The increasing order of the wavelength is given by
Gamma rays
x rays
Ultra violet rays
Visible radiations
Infrared rays
micro waves
Radio waves
So, ultra violet rays has larger wavelength than radio waves.
As we know that the energy is inversely proportional to the wavelength.
So, the energy of radio waves is more than the energy of ultra violet waves.
Energy of ultra violet photons < Energy of radio waves
Wavelength of ultra violet photons > Wavelength of radio waves
We actually cant, really. Black Holes are really very powerful and don't just happen in some random place in the cosmos. We have got shots of Black holes that you cannot even see, but all the other big black holes that look like something straight of a sci-fi movie that look real, are really just photo- shopped. good question. Hope This Helped.
Answer:
The correct option is;
B) The specific heat of ice is less than that of water.
Explanation:
Here we have
Let the amount of energy added to the ice at -10 C to raise the temperature to -5 C be X J
Let the amount of energy added to the water at 15 C to raise the temperature to 20 C be Y J
We know that the heat required, ΔQ to raise the temperature of a substance is given by
ΔQ = m·c·Δθ
Where:
m = Mass of the substance
c = Specific heat capacity
Δθ = Temperature change
Since the mass of the ice and the water are the same, so also is the change in temperature, (-5 - (-10) = 5 and 20 - 15 = 5) we have
for m₂·c₂·Δθ₂ > m₁·c₁·Δθ₁
Where:
m₁, c₁, Δθ₁, is for the ice and m₂, c₂, Δθ₂ is for the water and
m₁ = m₂
Δθ₁ = Δθ₂
Therefore,
c₂ > c₁ = c₁ < c₂
That is the specific heat capacity of the ice is lesser than the specific heat capacity of the water.