Answer:

Explanation:
Newton's 2nd law is given as
.
To find the acceleration in the horizontal direction, you need the horizontal component of the force being applied.
Using trigonometry to find the horizontal component of the force:

Use this horizontal component of the force to solve for for the acceleration of the object:

Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
Answer: .4 m/s^2= acceleration
Explanation:
f = m*a
We can rearrange this equation to solve for acceleration. Therefore,
a=f/m
a= 28N/70kg
a= 0.4 m/s^2
Answer:
To determine how efficient that system is.
Answer:
7) λ = 0.5 m, 8) f = 4.8 10¹⁴ Hz
Explanation:
The speed of an electromagnetic wave is
c = λ f
where c is the speed of light in vacuum c = 3 10⁸ m / s
7) indicate the frequency f = 6.0 10⁸ Hz
we do not know the wavelength
λ = c / f
we calculate
λ = 3 10⁸ / 6.0 10⁸
λ = 0.5 m
8) indicate the wavelength λ = 6.25 10-7 m
we do not know the frequency
f = c / λ
we calculate
f = 3 10⁸ / 6.25 10⁻⁷
f = 0.48 10¹⁵ Hz
f = 4.8 10¹⁴ Hz