Answer:
The number of liters of ice water is 11 L
Explanation:
Given data:
normal body temperature = 37°C
temperature of the ice water = 0°C
Cwater = specific heat of water = 4186 J/kg °C
Suppose the person drinks 1 L of cold water, then, the mass is 1 kg
The heat is:

The sign (-) indicates the energy lost by the metabolic process. If the Qwalk is 390 kilocalories, then the number of liters of ice water is equal to:

Answer:
The answer is D
The second law of thermodynamics
Answer:
22/2 = 11
Explanation:
A quotient means the result of a division problem. When it says the quotient of a and b, this means of "a divided by b". Remember to always go in the right order, because in division, order matters.
Therefore the quotient of 22 and 2 is equal to 11 is written: 22/2 = 11
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer:
bc it was a universal explosion and It started the future
Explanation:
FACTS