Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
<span>The answer is The conductance of a conductor is inversely
proportional to the cross-sectional area of the conductor.</span>
<span>Conductance is directly related to the ease offered by any material to the passage of electric current. Conductance is the opposite of resistance. The higher the conductance, the lower the resistance and vice versa, the greater the resistance, the less conductance, so both are inversely proportional</span>
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s
Answer:
Weight
a) weight's vertical component = Normal upward force
b) weight's horizontal component = Friction force = (mass of ball)(acceleration)
These forces depend upon the track,
1) inclined or horizontal
2) steepness.
Explanation
The force of gravity points straight down, but a ball rolling down a ramp doesn't go straight down, it follows the ramp. Therefore, only the component of the weight which points along the direction of the ball's motion can accelerate the ball.
weight's horizontal component = Friction force = (mass of ball)(acceleration)
The other component pushes the ball into the ramp, and the ramp pushes back.
If the ramp is horizontal, then the ball does not accelerate, as gravity pushes the ball into the ramp and not along the surface of the ramp. Hope this helps. Can u give me brainliest
Explanation:
From that particular list:
Mica (A), Quartz (B), and Copper (D) are minerals.
Steam (C) isn't.