Sound needs medium to travel and it can not travel without medium
so sound wave is a travelling wave
now we also know that sound wave propagate in form of rarefaction and compression.
So all medium particles travel in the direction of wave only
so it is a longitudinal wave also
so correct answer will be
<em>mechanical longitudinal </em>
A decrease in velocity is referred to as deceleration. If car is moving at 30 m/s and stop in 50 m .The value of deceleration is 11.56 ms−2.
<h3>How to calculate deceleration ?</h3>
While acceleration is motion in which an object's speed varies every second, deceleration is motion that causes an object to slow down.
We are aware that acceleration refers to an object's rate of increase in speed, and deceleration refers to an object's rate of decrease in speed. For instance, when we apply the brakes while driving, we benefit from the vehicle's ability to decelerate and slow down.
The Deceleration Formula is the final velocity minus the initial velocity, with a negative sign in the result because the velocity is decreasing, if starting velocity, final velocity, and time taken are given.
velocity of car = 30 m/s
car need to stop in 50m
Deceleration a = v^2 – u^2 / 2s
= 0^2 - 50^2 / 2*30
= 11.56
Deceleration of the care = 11.56 ms−2
To learn more about deceleration refer :
brainly.com/question/75351
#SPJ4
Kinetic energy means movement. This means that the more something moves, the more kinetic energy it will have! And the faster something moves, the more heat it produces! Altogether, this means that the more Kinetic energy something has, the hotter it will be!
The opposite is also true. The less something moves, it will have less Kinetic energy and the colder it will get.
If you're having trouble understanding this, think of it like how the particles in water move compared to how the particles in ice move. The particles in water are free flowing and can move wherever they want. If they get colder, they won't move as much, and eventually they'll stop flowing around, forming a solid and staying colder than the water will get.