Answer:
The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.
Explanation:
Diameter of pipe = 2 in = 0.0508 m
Steam temperature
= 300 F = 422.04 K
Duct temperature
= 70 F = 294.26 K
Emmisivity of surface 1 = 0.79
Emmisivity of surface 2 = 0.276
Net emmisivity of both surfaces ∈ = 0.25
Stefan volazman constant
= 5.67 ×

Heat transfer per foot length is given by
Q = ∈
A (
) ------ (1)
Put all the values in equation (1) , we get
Q = 0.25 × 5.67 ×
× 3.14 × 0.0508 × 1 × (
)
Q = 54.78 Watt per foot.
This is the value of heat transferred watt per foot length.
We are given a CSP with only binary can concentrate assume we run backtrackingSearch with ARC
Answer:
≅ 111 KN
Explanation:
Given that;
A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8
mass = 85,000 kg
drag co-efficient (C) = 0.37
(velocity (v)= 230 m/s
density (ρ) = 1.0 kg/m³
To calculate the thrust; we need to determine the relation of the drag force; which is given as:
=
× CρAv²
where;
ρ = density of air wind.
C = drag co-efficient
A = Area of the jet
v = velocity of the jet
From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0
SO, 
We can as well say:

We can now replace
in the above equation.
Therefore,
=
× CρAv²
The A which stands as the area of the jet is given by the formula:

We can now have a new equation after substituting our A into the previous equation as:
=
× Cρ 
Substituting our data from above; we have:
=
× 
= 
= 110,990N
in N (newton) to KN (kilo-newton) will be:
= 
= 110.990 KN
≅ 111 KN
In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.
Wait why do you want me to
True.
To understand it better
First job : Pet shop
Second job : pizza place
The first job supports his career path he has experience.
The second job support life in making sure he gets to his career path/ does help financially for him to get there.
And it’s called career pathway.