1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
13

A student determines the density ρ of steel by taking measurements from a steel wire

Physics
1 answer:
Marina CMI [18]3 years ago
6 0

Answer:

The percentage uncertainty in his calculated value of density is \pm 0.713\,\%.

Explanation:

We can estimate the absolute uncertainty by the definition of total differential. That is:

\Delta \rho \approx \frac{\partial \rho}{\partial m}\cdot \Delta m + \frac{\partial \rho}{\partial d}\cdot \Delta d + \frac{\partial \rho}{\partial l}\cdot \Delta l (1)

Where:

\frac{\partial \rho}{\partial m} - Partial derivative of the density with respect to mass, measured in \frac{1}{mm^{3}}.

\frac{\partial \rho}{\partial d} - Partial derivative of the density with respect to diameter, measured in grams per cubic milimeter.

\frac{\partial \rho}{\partial l} - Partial derivative of the density with respect to length, measured in grams per cubic milimeter.

\Delta m - Mass uncertainty, measured in grams.

\Delta d - Diameter uncertainty, measured in milimeters.

\Delta l - Length uncertainty, measured in milimeters.

\Delta \rho - Density uncertainty, measured in grams per cubic milimeters.

Partial derivatives are, respectively:

\frac{\partial \rho}{\partial m} = \frac{4}{\pi\cdot d^{2}\cdot l} (2)

\frac{\partial \rho}{\partial d} = -\frac{8\cdot m}{\pi\cdot d^{3}\cdot l} (3)

\frac{\partial \rho}{\partial l} = - \frac{4\cdot m}{\pi\cdot d^{2}\cdot l^{2}} (4)

And we expand (1) as follows:

\Delta \rho \approx \frac{4\cdot \Delta m}{\pi\cdot d^{2}\cdot l} - \frac{8\cdot m\cdot \Delta d}{\pi\cdot d^{3}\cdot l}-\frac{4\cdot m\cdot \Delta l}{\pi\cdot d^{2}\cdot l^{2}}

\Delta \rho \approx \left(\frac{4}{\pi\cdot d^{2}\cdot l}\right)\cdot \left(\Delta m -\frac{m\cdot \Delta d}{d}-\frac{m \cdot \Delta l}{l}  \right) (5)

If we know that d = 2\,mm, l = 25\,mm, m = 6.2\,g, \Delta m = \pm 0.1\,g, \Delta d = \pm 0.01\,mm and \Delta l = \pm 0.1\,mm, then the absolute uncertainty is:

\Delta \rho \approx \pm\left[\frac{4}{\pi\cdot (2\,mm)^{2}\cdot (25\,mm)} \right]\cdot \left[(0.1\,g)-\frac{(6.2\,g)\cdot (0.01\,mm)}{2\,mm} -\frac{(6.2\,g)\cdot (0.1\,mm)}{25\,mm} \right]

\Delta \rho \approx \pm 5.628\times 10^{-4}\,\frac{g}{mm^{3}}

And the expected density is:

\rho = \frac{4\cdot m}{\pi\cdot d^{2}\cdot l} (6)

\rho = \frac{4\cdot (6.2\,g)}{\pi\cdot (2\,mm)^{2}\cdot (25\,mm)}

\rho \approx 78.941\times 10^{-3}\,\frac{g}{mm^{3}}

The percentage uncertainty in his calculated value of density is:

\%e = \frac{\Delta \rho}{\rho}\times 100\,\% (7)

If we know that \Delta \rho \approx \pm 5.628\times 10^{-4}\,\frac{g}{mm^{3}} and \rho \approx 78.941\times 10^{-3}\,\frac{g}{mm^{3}}, then the percentage uncertainty is:

\%e = \frac{\pm 5.628\times 10^{-4}\,\frac{g}{mm^{3}} }{78.941\times 10^{-3}\,\frac{g}{mm^{3}} }\times 100\,\%

\%e = \pm 0.713\,\%

The percentage uncertainty in his calculated value of density is \pm 0.713\,\%.

You might be interested in
Earning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement
lana [24]

Answer:

the work done by the 30N force is 4156.92 J.

For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:

W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J

8 0
3 years ago
Which list includes translucent objects only
Lunna [17]

Objects that let in light and blurry images are translucent.

Translucent is a term that refers to an adjective. This characteristic is the property of an object to allow the passage of light, without allowing visibility with high clarity through it.

This term is often confused with transparency. However, they differ because a transparent object lets light through easily and allows you to see clearly through it.

According to the above, objects that allow light to pass through but do not allow clear vision are translucent.

Learn more in: brainly.com/question/10626808

5 0
3 years ago
A car is moving in the positive direction along a straight highway and accelerates at a constant rate while going from point A t
rusak2 [61]

Answer:

The time where the avergae speed equals the instaneous speed is T/2

Explanation:

The velocity of the car is:

v(t) = v0 + at

Where v0 is the initial speed and a is the constant acceleration.

Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_{ave} = \frac{1}{T}\int\limits^T_0 {v(t)} \, dt

v_ave = v0+a(T/2)

We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>

v(T/2)=v_ave

Now we want to know where the car should be, the osition of the car is:

x(t) = x_A + v_0 t + \frac{1}{2}at^2

Where x_A is the position of point A. Therefore, the car will be at:

<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>

8 0
3 years ago
While tuning a string to the note C at 523 Hz, a piano tuner hears 2.00 beats/s between a reference oscillator and the string.
lara31 [8.8K]

Answer:

a)the possible frequencies are 521hz ,522hz, 523, 524hz,525hz

b) 526hz

c)0.989 or a 1.14% decrease in tension

Explanation:

a) While tuning a string at 523 Hz,piano tuner hears 2.00 beats/s between a reference oscillator and the string.

The possible frequencies of the string can be calculated by

fl=f' - B

where

fl= lower limit of the possible frequency

f'= frequency of the string

B= beat heard by the tuner

fl= 523hz + Or - (2beats/secs * 1hz/1beat per sc)

fl= 521hz or 525hz

So the possible frequencies are 521hz ,522hz, 523, 524hz,525hz

b)fl=f' - B

523hz= f' - 3

f'= 523 + 3= 526hz

c) The tension is directly proportional to the square of the frequencies

T1/T2 =f1^2/f2^2

523^2 / 526^2 = 0.989 or a 1.14% decrease in tensio

6 0
3 years ago
The acceleration due to gravity vector is always in the ____ direction.
finlep [7]
It goes in the downward direction
4 0
3 years ago
Other questions:
  • The belief that scientific psychology should be studying only observable behaviors is known as __________.
    11·2 answers
  • A ball is thrown straight upward and rises to a maximum height of 18.0 m above its launch point. at what height above its launch
    9·1 answer
  • Fill in the blanks with the terms that complete the sentences about nuclear power plants. Without a critical of fissionable mate
    11·2 answers
  • Which condition must be met in order for an equation to be balanced?
    7·1 answer
  • How would water be different if it wasnt a polar molecule?
    14·1 answer
  • Which example best demonstrates how unbalanced forces change the speed of an object's motion? A) A child on a bicycle braking at
    15·2 answers
  • 1. What do the elements Sulfur (S), Nitrogen (N), Phosphorous (P), and Bromine (Br) all have in
    8·1 answer
  • What causes a submarine to rise and descend?
    11·1 answer
  • Use the vocabulary in the Word Bank to complete the following explanation.
    12·1 answer
  • Which of the following surface will absorb radiant heat energy best
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!