1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
13

A student determines the density ρ of steel by taking measurements from a steel wire

Physics
1 answer:
Marina CMI [18]3 years ago
6 0

Answer:

The percentage uncertainty in his calculated value of density is \pm 0.713\,\%.

Explanation:

We can estimate the absolute uncertainty by the definition of total differential. That is:

\Delta \rho \approx \frac{\partial \rho}{\partial m}\cdot \Delta m + \frac{\partial \rho}{\partial d}\cdot \Delta d + \frac{\partial \rho}{\partial l}\cdot \Delta l (1)

Where:

\frac{\partial \rho}{\partial m} - Partial derivative of the density with respect to mass, measured in \frac{1}{mm^{3}}.

\frac{\partial \rho}{\partial d} - Partial derivative of the density with respect to diameter, measured in grams per cubic milimeter.

\frac{\partial \rho}{\partial l} - Partial derivative of the density with respect to length, measured in grams per cubic milimeter.

\Delta m - Mass uncertainty, measured in grams.

\Delta d - Diameter uncertainty, measured in milimeters.

\Delta l - Length uncertainty, measured in milimeters.

\Delta \rho - Density uncertainty, measured in grams per cubic milimeters.

Partial derivatives are, respectively:

\frac{\partial \rho}{\partial m} = \frac{4}{\pi\cdot d^{2}\cdot l} (2)

\frac{\partial \rho}{\partial d} = -\frac{8\cdot m}{\pi\cdot d^{3}\cdot l} (3)

\frac{\partial \rho}{\partial l} = - \frac{4\cdot m}{\pi\cdot d^{2}\cdot l^{2}} (4)

And we expand (1) as follows:

\Delta \rho \approx \frac{4\cdot \Delta m}{\pi\cdot d^{2}\cdot l} - \frac{8\cdot m\cdot \Delta d}{\pi\cdot d^{3}\cdot l}-\frac{4\cdot m\cdot \Delta l}{\pi\cdot d^{2}\cdot l^{2}}

\Delta \rho \approx \left(\frac{4}{\pi\cdot d^{2}\cdot l}\right)\cdot \left(\Delta m -\frac{m\cdot \Delta d}{d}-\frac{m \cdot \Delta l}{l}  \right) (5)

If we know that d = 2\,mm, l = 25\,mm, m = 6.2\,g, \Delta m = \pm 0.1\,g, \Delta d = \pm 0.01\,mm and \Delta l = \pm 0.1\,mm, then the absolute uncertainty is:

\Delta \rho \approx \pm\left[\frac{4}{\pi\cdot (2\,mm)^{2}\cdot (25\,mm)} \right]\cdot \left[(0.1\,g)-\frac{(6.2\,g)\cdot (0.01\,mm)}{2\,mm} -\frac{(6.2\,g)\cdot (0.1\,mm)}{25\,mm} \right]

\Delta \rho \approx \pm 5.628\times 10^{-4}\,\frac{g}{mm^{3}}

And the expected density is:

\rho = \frac{4\cdot m}{\pi\cdot d^{2}\cdot l} (6)

\rho = \frac{4\cdot (6.2\,g)}{\pi\cdot (2\,mm)^{2}\cdot (25\,mm)}

\rho \approx 78.941\times 10^{-3}\,\frac{g}{mm^{3}}

The percentage uncertainty in his calculated value of density is:

\%e = \frac{\Delta \rho}{\rho}\times 100\,\% (7)

If we know that \Delta \rho \approx \pm 5.628\times 10^{-4}\,\frac{g}{mm^{3}} and \rho \approx 78.941\times 10^{-3}\,\frac{g}{mm^{3}}, then the percentage uncertainty is:

\%e = \frac{\pm 5.628\times 10^{-4}\,\frac{g}{mm^{3}} }{78.941\times 10^{-3}\,\frac{g}{mm^{3}} }\times 100\,\%

\%e = \pm 0.713\,\%

The percentage uncertainty in his calculated value of density is \pm 0.713\,\%.

You might be interested in
A 10 cm diameter pulley is used to lift a bucket of cement weighing 400 N. How much force must be applied to the rope to lift th
Alina [70]

hi brainly user! ૮₍ ˃ ⤙ ˂ ₎ა

⊱┈────────────────────────┈⊰

\large \bold {ANSWER}

Considering that the pulley is fixed, the force applied should be equal to the weight of the object - of 400N.

\large \bold {EXPLANATION}

Pulleys or pulleys are mechanical tools used to assist in the movement of objects and bodies. There are two types of pulleys: fixed and movable. While the fixed pulley changes the direction of force, the moving pulley helps to decrease the force needed to move the object or body in question.

As the statement only tells us a pulley, we must consider that it is fixed, <u>because generally when it is mobile, this information is highlighted in the question</u>.

In this way, a fixed pulley only changes the direction of the applied force. Thus, the force must have the same magnitude as the weight of the object to be moved. If the bucket weighs 400N, the force applied to the pulley must be 400N.

<u>Therefore, having a fixed pulley, the force applied must be equal to the weight of the object, and will be 400N.</u>

3 0
2 years ago
Questions 15 out of 20
Olin [163]

Answer:

D

Explanation:

7 0
3 years ago
Calculate the energy of the green light emitted, per photon, by a mercury lamp with a frequency of 5.49 × 1014 hz.
Tcecarenko [31]
The energy of a photon is given by
E=hf
where
h=6.6 \cdot 10^{-34} Js is the Planck constant
f is the frequency of the photon

In our problem, the frequency of the light is 
f=5.49 \cdot 10^{14}Hz
therefore we can use the previous equation to calculate the energy of each photon of the green light emitted by the lamp:
E=hf=(6.6 \cdot 10^{-34}Js)(5.49 \cdot 10^{14} Hz)=3.62 \cdot 10^{-19} J
8 0
3 years ago
HELPPP PLEASEEE!!!!!
devlian [24]

Answer:

1) The speed of sound increases

2)  440 Hz

3)  29°C

4)  17°C

5) 434 Hz

6)  12 m/s

7)  17.3 m

Explanation:

1) The speed of sound increases

2) V = f×λ

f = V/λ = 343/0.78 = 439.744 ≈ 440 Hz

3) V = f×λ

512 × 0.68 = 348.16 m/s

348.16 - 331 = 17.16

T = 17.16/0.6 = 28.6 ≈ 29°C

4) Increase in speed = 350 - 340 = 10

Increase in temperature = 10/0.6 = 16.67° ≈ 17°C

5) f = V/λ = 343/0.79 = 434 Hz

6) 331 + 0.6×30 - (331 × 0.6 ×10) = 12 m/s

7) V = 331 + 0.6×25 = 346m/s

λ = 346/20 = 17.3 m

5 0
3 years ago
Which statement best describes the energy changes that occur while a child is riding on a sled down a steep, snow-covered hill?
Tema [17]
<span>Kinetic energy increases and potential energy decreases.
</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • Phenotype describes
    14·1 answer
  • What two functions does the evaporator of a domestic refrigerator perform?
    9·1 answer
  • A baseball player leads off the game and hits a long home run. The ball leaves the bat at an angle of 70.0 from the horizontal w
    14·1 answer
  • A quarterback claims that he can throw the football a horizontal distance of 167 m. Furthermore, he claims that he can do this b
    14·1 answer
  • How do you know when motion has occurred?
    11·1 answer
  • What force (in N) must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2400 kg car (a large car
    5·1 answer
  • Two satellites, one in geosynchronous orbit (T = 24 hrs) and one with a period of 12 hrs, are orbiting Earth. How many times lar
    10·1 answer
  • Of the following reactions, which is a fusion reaction?
    7·1 answer
  • Atoms can join together to form ______ substance​
    10·1 answer
  • 20 points and brainiest
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!