Answer:
1.3636
Explanation:
Write the expression for the refractive index.
n=c/v
c= speed of light in air
v= speed of light in material
=(3×10^8 m/s)/(2.2×10^8 m/s)
=1.3636
Answer:
C. less than 950 N.
Explanation:
Given that
Force in north direction F₁ = 500 N
Force in the northwest F₂ = 450 N
Lets take resultant force R
The angle between force = θ
θ = 45°
The resultant force R


R= 877.89 N
Therefore resultant force is less than 950 N.
C. less than 950 N
Note- When these two force will act in the same direction then the resultant force will be 950 N.
Answer:
Batteries are systems that store chemical energy and then release it as electrical energy when they are connected to a circuit. Batteries can be made from many materials, but they all share three main components: a metal anode, a metal cathode and an electrolyte between them. The electrolyte is an ionic solution that allows charge to flow through the system. When a load, such as a light bulb, is connected, an oxidation-reduction reaction occurs that releases electrons from the anode while the cathode gains electrons
Explanation:
Answer:
a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Explanation:
The center of mass of a system of particles (
), measured in meters, is defined by this weighted average:
(1)
Where:
- Mass of the i-th particle, measured in kilograms.
- Location of the i-th particle with respect to origin, measured in meters.
If we know that
,
,
,
,
and
, then the coordinates of the third particle are:




a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
<span>As the body rises up its gravitational potential energy increases but its kinetic energy decreases.
As a body falls its gravitational potential energy decreases but it's kinetic energy increases</span>