Answer:
option 1
Explanation:
i just used the SOH CAH TOA, and since the given is tan=opposite/adjacent, that should be the answer
Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Answer:
Temperature, T = 3.62 kelvin
Explanation:
It is given that,
Total number of gas molecules, 
Her body is converting chemical energy into thermal energy at a rate of 125 W, P = 125 W
Time taken, t = 6 min = 360 s
Energy of a gas molecules is given by :

, k is Boltzmann constant


T = 3.62 K
So, the temperature increases by 3.62 kelvin. Hence, this is the required solution.
Answer:
15
Explanation:
mass, M = 5Kg
horizontal force, F_h = 40N
acceleration, a =5 m/s^2
frictional force, F_f =?
net force = ma
net force = F_h - F_f = 40N - F_f
40 - F_f = 5 x 5
- F_f = 25 - 40
multiply both side by -1
F_f = 40 - 25 = 15
the frictional force is 15N
Hey there,
<em />Answer:
The sun appears to move across the sky but it is actually the earth which is orbiting around the sun.
Hope this helps :D
<em>~Top</em>