Energy can be one answer! There are many, but energy is a main one.
Answer:
Explanation:
which is the final velocity minus the initial velocity in the numerator, and the change in time in the denominator. For us:
so
a = .92 m/s/s (NOT negative because you're speeding up)
Answer:
a) t = 0.0185 s = 18.5 ms
b) T = 874.8 N
Explanation:
a)
First we find the seed of wave:
v = fλ
where,
v = speed of wave
f = frequency = 810 Hz
λ = wavelength = 0.4 m
Therefore,
v = (810 Hz)(0.4 m)
v = 324 m/s
Now,
v = L/t
where,
L = length of wire = 6 m
t = time taken by wave to travel length of wire
Therefore,
324 m/s = 6 m/t
t = (6 m)/(324 m/s)
<u>t = 0.0185 s = 18.5 ms</u>
<u></u>
b)
From the formula of fundamental frquency, we know that:
Fundamental Frequency = v/2L = (1/2L)(√T/μ)
v = √(T/μ)
where,
T = tension in string
μ = linear mass density of wire = m/L = 0.05 kg/6 m = 8.33 x 10⁻³ k gm⁻¹
Therefore,
324 m/s = √(T/8.33 x 10⁻³ k gm⁻¹)
(324 m/s)² = T/8.33 x 10⁻³ k gm⁻¹
<u>T = 874.8 N</u>
Answer:
D. only briefly while being connected or disconnected.
Explanation:
As we know that transformer works on the principle of mutual inductance
here we know that as per the principle of mutual inductance when flux linked with the primary coil charges then it will induce EMF in secondary coil
So here when AC source is connected with primary coil then it will give output across secondary coil because AC source will have change in flux with time.
Now when we connect DC source across primary coil then it will not induce any EMF across secondary coil because DC source is a constant voltage source in which flux will remain constant always
So here in DC source the EMF will only induce at the time of connection or disconnection when flux will change in it while rest of the time it will give ZERO output
so correct answer will be
D. only briefly while being connected or disconnected.
Answer:
Zero work done,since the body isn't acting against or by gravity.
Explanation:
Gravitational force is usually considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.
Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.
The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.