Answer:
3 × 10⁴ kJ
Explanation:
Step 1: Write the balanced thermochemical equation
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(g) ΔH = -2220 kJ
Step 2: Calculate the moles corresponding to 865.9 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
865.9 g × 1 mol/18.02 g = 48.05 mol
Step 3: Calculate the heat produced when 48.05 moles of H₂O are produced
According to the thermochemical equation, 2220 kJ of heat are evolved when 4 moles of H₂O are produced.
48.05 mol × 2220 kJ/4 mol = 2.667 × 10⁴ kJ ≈ 3 × 10⁴ kJ
Answer:
Ok Hold up. I will answer after I think of question
Explanation:
Answer: 1.997 M
Explanation:
molarity = moles of solute/liters of solution or 
first we have to find our moles of solute (mol), which you can find by dividing the mass of solute by molar mass of solute
mass of solute: 92 g
molar mass of solute: 46.08 g/mol
let's plug it in:

next, we plug it into our original equation:

I think u turn down the heat not to sure
C would be the right answer