Answer:
s₁ = 0.022 m
Explanation:
From the law of conservation of momentum:

where,
m₁ = mass of hockey player = 97 kg
m₂ = mass of puck = 0.15 kg
u₁ = u₂ = initial velocities of puck and player = 0 m/s
v₁ = velocity of player after collision = ?
v₂ = velocity of puck after hitting = 48 m/s
Therefore,

negative sign here shows the opposite direction.
Now, we calculate the time taken by puck to move 14.5 m:

Now, the distance covered by the player in this time will be:

<u>s₁ = 0.022 m</u>
The resistance would go down since you essentially have one less resistor
Impulse = Force * time
Impulse = 500N *0.5 s =250 N*s
"<span>H-C=N:" is the one answer among the choices given in the question that shows the correct dot diagram. The correct option among all the options that are given in the question is the fourth option or option "D". The other choices can be neglected. I hope that this is the answer that has come to your help.</span>
P = IV
I = P/V = 30 / 120 = 0.25 A.
Current = 0.25A