Answer:
(a) has the highest frequency
Explanation:
E = hf...where E(is the energy of a photon);h(is the planck's constant) and f is the frequency of the photon
Whereby this formula shows us that energy of a photon is directly proportional to its frequency
So hence if the energy is high then the frequency of the photon is also high
Answer:
60 km/h
Explanation:
Simplify the speed:
120÷2=60
Hence, the average speed is 60 km/h.
For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099
Answer:
Average speed = 3.63 m/s
Explanation:
The average speed during any time interval is equal to the total distance travelled divided by the total time.
That is,
Average speed = distance/ time
Let d represent the distance between A and B.
Let t1 be the time for which she has the higher speed of 5.15 m/s. Therefore,
5.15 = d/t1.
Make d the subject of formula
d = 5.15t1
Let t2 represent the longer time for the return trip at 2.80 m/s . That is,
2.80 = d/t2.
Then the times are t1 = d/5.15 5 and
t2 = d/2.80.
The average speed vavg is given by the following equation.
avg speed = Total distance/Total time
Avg speed = d + d/t1 + t2
Where
Total distance = 2d
Total time = t1 + t2
Total time = d/5.15 + d/2.80
Total time = (2.8d + 5.15d)/14.42
Total time = 7.95d/14.42
Total time = 0.55d
Substitute total distance and time into the formula above.
Avg speed = 2d / 0.55d
Avg Speed = 3.63 m/s
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N