Answer:8 m/s
Explanation:
Given


kinetic Energy of 
initially
is at rest and let say
is moving with velocity u
kinetic Energy of 


In Completely inelastic collision both mass stick together and move with common velocity
Suppose v is the common velocity


therefore Final velocity with which both blocks moves is 1 m/s
(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
<span>this may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>
Electrostatic forces are non-contact forces; they pull or push on objects without touching them
The position of the sun and the moon affect how high the tide is