We Know, K.E. = 1/2 × m × v²
From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.
In short, Your Correct answer would be Option B
Hope this helps!
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
A dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
s = vt - 1 / 2 at²
s = Displacement
v = Final velocity
t = Time
a = Acceleration
s = 5 m
t = 1 s
a = 10 m / s²
5 = ( v * 1 ) - ( 1 / 2 * 10 * 1 * 1 )
5 = v - 5
v = 10 m / s
The equation used to solve the given problem is an equation of motion. In a free fall motion, usually air resistance is not considered for easier calculation. If air resistance is considered acceleration cannot be constant throughout the entire motion.
Therefore, a dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
To know more about equation of motion
brainly.com/question/5955789
#SPJ1
The force constant is 2.145 N/m.
<h3>What is spring constant?</h3>
- The spring constant is the force required to stretch or compress a spring divided by the distance traveled by the spring. It is used to determine whether a spring is stable or unstable.
- K is the proportionality constant, also known as the 'spring constant.' Hooke's law (F = -kx) specifies stiffness and strength via the k variable. The greater the value of k, the greater the force required to stretch an object to a given length.
Using the relation;
T = 2π√m/k
T = time period = 0.45 s
m = mass of object in kilograms = 0.011kg
k = spring constant
To find k based on the formula,
k = 4 × (3.142)^2 × 0.011 / (0.45 )^2
k = 2.145 N/m
Therefore the force constant is 2.145 N/m.
To learn more about force refer to :
brainly.com/question/12785175
#SPJ4
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m