add the numbers from the three sliders to determine that mass of an object
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
Answer:
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Explanation:
Hi there!
The total momentum of the system is given by the sum of the momentum vectors of each cart. The momentum is calculated as follows:
p = m · v
Where:
p = momentum.
m = mass.
v = velocity.
Then, the momentum of the system will be the momentum of cart A plus the momentum of cart B (let´s consider the right as the positive direction):
mA · vA + mB · Vb
0.450 kg · 0.850 m/s + 0.300 kg · (- 1.12 m/s) = 0.047 kg · m/s
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Answer:
Explanation:
Relative velocity is defined as the velocity of an object B in the rest frame of another object A.
Answer:
There are 4 liquids in this experiment and red is the least dense of all of them so it should float on top, which it is doing.
The red that you see at the bottom is neither liquid nor is it a part of the experiment.
It is simply the <u>color of the bottom of the container</u> that the experiment was conducted in.