Answer:the suns family is stars think about how many stars are in the sky there are billons and more billions
Explanation:
Answer:
The time taken for the cross mark to disappear decreases steadily down the column.
Explanation:
Now if we look at the data provided, we will discover that the volume of the HCl was held constant while the volume of the thiosulphate was increased steadily and the volume of water decreased steadily.
Recall that a system is more concentrated when it contains less volume of water and more volume of reactants. Hence as the volume of water in the system is being reduced, the concentration of reactants is increased.
It has been established that an increase in the concentration of reactants lead to an increase in the rate of reaction. The disappearance of the cross shows the completion of the reaction between HCl and thiosulphate. The faster or slower the cross disappears, the faster or slower the rate of reaction.
Since increase in concentration of reactants increases the rate of reaction, it is observed that as the volume of the thiosulphate increases (reactant concentration increases) the cross disappears faster (rate of reactant increases). Hence as the volume of thiosulphate increases, it takes a shorter time for the cross to disappear. This implies that the time column in the table (refer to the question) will decrease steadily as the volume of thiosulphate increases.
Answer:
D. It is limited to situations that involve aqueous solutions or specific compounds.
Explanation:
An Arrhenius acid is a substance that increases the concentration of H3O or H+ when dissolved in water. An Arrhenius base is a substance that increases the concentration of OH- when dissolved in water. These definitions tell us that D is indeed limited to situations that involve aqueous solutions or specific compounds, as aqueous means something that's dissolved in water.
A is wrong because the Bronsted-Lowry interpretation has a wider range of applications. Bronsted-Lowry acids and bases don't even need to be aqueous, so it is not limited to just aqueous solutions. They include any substance that can donate or accept a H+.
B is wrong because A is wrong. A and B basically say the same thing, that the Arrhenius interpretation has a wider range of applications than the Bronsted-Lowry interpretation.
C is wrong because the definition of an Arrhenius base is any substance that increases the concentration of OH-, or hydroxide ions. C completely counters this statement.
Here's photo for proof incase you're doubtful of my answer & explanation. Please click the heart if it helped.