Answer:
4.67M
Explanation:
The concentration of methanol (CH3OH) can be calculated using the following:
Molarity (M) = number of moles(n)/volume(v)
However, mole is not given. It can be obtained by using:
Mole = mass / molar mass
Where; mass = 34.4g
Molar mass (MM) of CH3OH is:
= 12 + 1(3) + 16 + 1
= 12 + 3 + 17
= 32g/mol
mole = 34.4/32
mole = 1.075mol
The volume needs to be converted to L by dividing by 1000
230mL = 230/1000
= 0.230L
Molarity = mol/volume
Molarity = 1.075/0.230
Molarity = 4.6739
Molarity = 4.67M
The concentration of CH3OH in solution is 4.67M
Answer:
The correct answer is because they have same number of protons but different number of neutrons.
Explanation:
Isotopes are atoms of the same element but differ only in the number of neutrons in the nucleus, i.e. they have same atomic number but different mass number.
Mass number is affected as they have different number of neutrons, thus effecting their physical properties.
The number of electrons and protons are same, i.e. their atomic number is same and thus their chemical properties are same as chemical properties are determined by the atom’s electronic configuration and that relates to number of protons.
Answer:
136
Explanation:
The Mass Number is the combination of the amount of Protons and Neutrons in an element, so if the total mass is 222, and the amount of protons is 86, then you can do 86 + x = 222 to find that x is equal to 136
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)
Answer: The partial pressure of the dry oxygen is 742 torr
Explanation:
Dalton's Law of Partial Pressure states that the total pressure exerted by a mixture of gases is the sum of partial pressure of each individual gas present. Thus 
Given; Total pressure = 762 torr
partial pressure of water = 19.8 torr
partial pressure of dry oxygen = ? torr
Total pressure = partial pressure of water + partial pressure of dry oxygen
762 torr = 19.8 torr = partial pressure of dry oxygen
partial pressure of dry oxygen = 742 torr
The partial pressure of the dry oxygen is 742 torr